
STA4516: Topics in Probabilistic Programming Fall 2015

Lecture 2 — November 3, 2015

Prof. Daniel M. Roy Scribe: Mufan (Bill) Li

1 Overview

In the last lecture we saw an introduction and motivations for studying probabilistic programs.

This lecture partly taught using presentation slides and partly on chalk board. In the presenta-
tion, we briefly discussed exchangeable structures, de Finetti’s Theorem and the application
to achieve conditional independence, and the computability properties of these structures.
On the chalk board, we saw a lightweight implementation of probabilistic programs using a
Metropolis-Hasting type algorithm.

2 Presentation

Here I add several notes supplementary to the presentation, please see the original slides for full
details.

2.1 de Finetti’s Theorem

An exchangeable sequence (Y1, Y2, . . . , YN) has a fully connected graphical model, which has O(N2)
number of connections. By applying de Finetti’s Theorem, we are able to reduce the number of
connections to N , as well as allow parallel computation of random numbers since we have
conditional independence.

An important remark is the transformation f(θ, U), where conditioned on θ gives independence
and U is a uniform random variable, is not unique. Here any measure-preserving transformations
of θ and U will give the same results, specifically

ψ(U)
d
= U ⇒ ∃fψ(θ, ψ(U)) :

(
Y1, . . . , YN

) d
=
(
fψ(θ, ψ(U1)), . . . , f

ψ(θ, ψ(U))
)

3 Chalk Board

In this section, we discuss a lightweight implementation of probabilistic programs from [1].

3.1 Introduction

Definition 1. An unconditional probabilistic program is a parameterless function f with an
arbitrary mix of stochastic and deterministic elements.

1

Informally f is a deterministic program until it calls an external stochastic coroutine to generate
randomness. For example, MATLAB calls rand to generate a uniform random variable. These
coroutines are called elementary random primitives (ERPs).

Definition 2. The families of distributions
(
Pt(·, θ)

)
t

are dominated by some σ-finite measure µt
if

∃ densities pt(·, θ) : Pt(A|θ) =

∫
A
pt(x|θ)µt(dx)

For example, the family of Gaussian distributions has densities pt(·|θ) = N (x, σ2), where t deter-
mines the Gaussian type, and θ determines the parameters (mean and variance) (x, σ2). Here the
Gaussian family is dominated by the Lebesgue measure i.e µt(dx) = m(dx).

Definition 3. T is a set of ERP types, where for each t ∈ T , we have a dominated family of
distributions

(
Pt(·, θ)

)
t
, with densities pt(x|θ) where θ ∈ Θt.

Note µt can depend on the ERP type t but not parameters θ. It is also important to note the
requirement that these families of distributions to be dominated is rarely mentioned, but implicit
in the way that these densities are used.

Here we introduce a simple example in MATLAB.

for i = 1:1000
i f (rand > 0 . 5)

x (i) = randn ;
else

x (i) = gammarnd ;
end

end

where rand generates a uniform random variable, randn corresponds to a standard normal, and
gammarnd is gamma.

Depending on the return values of ERPs, we may have different paths of execution. Here we
introduce the execution trace, a minimal log of execution containing the requests for ERP and
return values, which is sufficient to reconstruct the path of execution.

A possible trace may look like this:

Index t θ Return

1 rand [a, b] 0.7
2 randn (x, σ2) -2.7
3 rand [a, b] 0.2
4 gammarnd (k, φ) 1.9
...

...
...

...
2000 randn (x, σ2) 1.5

Here a total of 2000 random choices are made. It is also possible to for it to be random. For
example:

accept = f a l s e ;

2

n = 0 ;
l i s t = [] ;
while not accept

n = n + 1 ;
l i s t = [l i s t n] ; % concatenate n to the end o f l i s t
accept = rand < 0 .5

end

The number of ERPs encountered here is geometrically distributed with mean 2.

3.2 Statistical Inference as Conditional Simulation

Consider the following program

X = gammarnd ;
for j = 1:1000

Y(j) = pois sonrnd (X) ;
end

This program generates a sequence of Poisson random variables using a gamma prior,
i.e. X ∼ Gamma, Yj ∼ Poisson(X−1), Y = (Y1, . . . , Y1000). If Yj model the number of emails that
employee j receives in one day, how would we estimate the (common) rate at which email arrives?

Suppose we had data y = (y1, . . . , y1000), we could simulate the program many times until we see
data Y = y. The value X used for that particular simulation is then a perfect sample from the
posterior P (X|Y = y). This is also known as rejection sampling, accept-reject, or guess and
check.

By conditional simulation, we mean a simulation of the program sampled from the distribution
over simulations satisfying some predicate. In this case the predicate is “accepts” a simulation if
Y = y, and rejects it otherwise.

3.2.1 Computing Posterior Distributions

In general sampling and taking expectations from a conditional distribution P (X|Y = y) can be
difficult even if we can calculate the joint density p(x, y). The reason is conditional densities has
the form

p(x|y) =
p(x, y)

p(y)
=

p(x, y)∫
p(x, y)τ(dx× Y)

and the integral on the bottom is generally hard to compute, even when given p and τ . Even if the
conditional density is known, to sample efficiently we also need the following

P (x ∈ A|Y = y) =

∫
A
p(x|y)τ(dx× Y)

to be computed efficiently as well. In order to address this issue, we consider the Metropolis-Hasting
algorithm.

3

3.2.2 Metropolis-Hasting (MH) Algorithm

MH is a way to sample from the posterior P (X|Y = y) or compute conditional expectations
E[f(X)|Y = y]. MH is one of many Markov chain Monte Carlo (MCMC) algorithms. For an
excellent survey of MCMC algorithms see [2].

We first fix a “proposal distribution”, or more formally a transition probability kernel

Q : X →M1(X)

on the space X, where M1(X) is the space of distributions on X. In other words, Q is a family of
distributions parameterized by x ∈ X.

We are going to assume that Q is dominated, i.e. there exist a σ-finite measure ν and density q
such that

Q(x,A) = Q(x)(A) =

∫
A
q(x, y)ν(dy)

For example, a choice of Q for random walk Metropolis-Hasting (RWMH) is the following

ε ∼ N (0, 1), Q(x) = L(x+ ε)
d
= N (x, 1)

Here Q(x) is a measure, q(x, y) is Gaussian, and ν(dy) is the Lebesgue measure. This leads to a
small perturbation of current value of x. Note the choice of ν is important if the space of interest
can be a null set w.r.t. ν. This is possible if the space of interest is lies on a sub-manifold of
measure zero, such as a curve in R2.

We then construct the following Markov chain

Initialize X0, i = 1;
repeat

Sample X ′i ∼ Q(Xi−1);
with probability a(Xi−1, Xi)

Set Xi = X ′i (accept);
otherwise

Set Xi = Xi−1 (reject);
i = i+ 1;

until;

where we define the function a as

a(x, x′) = min

{
1,
p(x′|y)q(x′, x)

p(x|y)q(x′, x)

}

The choice of the a(x, x′) results in the following property: let T (x, ·) = P (X1|X0 = x) be the
transition probability kernel for the chain (X0, X1, . . .), then

P (X ∈ dx|Y = y)T (x, dx′) = P (X ∈ dx′|Y = y)T (x′, dx) (1)

Therefore the Markov chain is reversible. In other words, the chain (X0, X1, . . .) can be extended
to (. . . , X−2, X−1, X0) and the backward processes are equal in distribution.

4

Condition (1) is called detailed balance. When (1) holds, it implies that P (X|Y = y) is a
stationary distribution: i.e. if we sample X0 ∼ P (X|Y = y), then every Xj ∼ P (X|Y = y).
Furthermore, if the Markov chain is ergodic, then for an arbitrary starting point X0, we have

Xj
d−→ X ∼ P (X|Y = y)

That is, we can generate a sample from the posterior P (X|Y = y) from running the Markov chain
from any starting point X0.

Fact 4. Only requirement of Q is ergodicity. Here the choice of a will bias Q to achieve detailed
balance (1).

Observation 5. The MH algorithm allowed us to avoid computing the integral by taking a ratio
instead

P (x′|y)

P (x|y)
=
P (x′, y)

P (x, y)

This is a result of ergodicity, where we exchange the integral over space to integral over time.

3.2.3 MH in Probabilistic Programming

In order to apply MH, we need to answer the following questions:

1. What is the space X?
Space of trace.

2. What is the transition probability kernel Q?
Transition probability from one trace path to another.

3. How to compute a?
TBA next lecture.

References

[1] David Wingate, Andreas Stuhlmüller, and Noah D. Goodman, Lightweight Implementations of
Probabilistic Programming Languages Via Transformational Compilation, AISTATS, 2011.

[2] Gareth O. Roberts, Jeffrey S. Rosenthal, General state space Markov chains and MCMC algo-
rithms. Probability Surveys, 2004.

5

	Overview
	Presentation
	de Finetti's Theorem

	Chalk Board
	Introduction
	Statistical Inference as Conditional Simulation
	Computing Posterior Distributions
	Metropolis-Hasting (MH) Algorithm
	MH in Probabilistic Programming

