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Introduction



Introduction

• Network Data: Observed edges between nodes, possibly
accompanied by additional information on the notes/edges.

• One of the Fundamental Analysis Tasks: Detecting and
modelling community structure within the network.

• Literature:
1. Algorithmic approaches in physics: Greedy methods such as

hierarchical clustering and algorithms based on optimizing a
global criterion over all possible partitions, such as normalized
cuts and modularity.

2. Model based methods in statistics: Postulate and fit a
probabilistic model for a network with communities -
stochastic block models and its extensions.
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Introduction — Stochastic Block Models (SBM)

Most commonly used and best studied model for community
detection.

• Network with n nodes defined by an n× n adjacency matrix A
— Symmetric and no self loops

• Model Assumption: True node labels
c = (c1, . . . , cn) ∈ {1, . . . ,K}n drawn independently from the
multinomial distribution with parameter π = (π1, . . . , πK )

• πi > 0 for all i and K is the known number of communities

• Conditional on the labels, Aij for i < j independent Bernoulli:

E
[
Aij

∣∣∣c] = Pcicj

• P = [Pab] is a K × K symmetric matrix
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Introduction — SBM

• Inference Task: Infer node labels c from A which involves
estimating π and P

• SBM implies the same expected degree for all nodes within a
community

• Excludes networks with ”hub” nodes commonly encountered
in practice

• Many extensions such as the mixed membership models

• This paper uses the extension to degree-corrected block
models
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Introduction — Degree Corrected SBM

• Remove the ”hub” exclusion constraint by augmenting

E
[
Aij

∣∣∣c] = Pcicj with

E
[
Aij

∣∣∣c] = θiθjPcicj

• θi ’s are node degree parameters satisfying an identifiability
constraint.

• In [22], Bernoulli distribution for Aij was replaced with
Poisson — Ease of technical derivations, good approximation
for a range of networks
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Introduction — Fitting SBMs

• Bayesian framework:

1. MCMC: work only for networks with a few hundred nodes
2. Variational Inference: faster than Gibbs sampling in MCMC

but do not scale to million of nodes
3. Belief Propagation recently proposed in [14]: Comparable to

the method in this presentation in theoretical complexity but
slower in practice

• Non-Bayesian Framework:

1. Profile Likelihood: For a given label assignment parameters
can be estimated by plug-in, they can be profiled out and the
resulting criterion can be maximized over all label assignments
by greedy search — speed depends on the search method and
the number of iterations — world for thousands but not
millions of nodes

2. A method of Moments approach: involves counting all
occurrences of specific patterns in a graph which is
computationally challenging.
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Introduction — Consistency

• Profile Likelihood: Give consistent estimates of the labels
under both the SBM and the degree-corrected version

1. Strong Consistency — Probability of the the estimated label
vector being equal to the truth converging to 1 — the average
graph degree λn has to grow faster than log n

2. Weak Convergence — The fraction of misclassified nodes
converging to 0 — only need λn →∞

• Variational Methods and Belief Propagation : Asymptotic
behaviour analyzed for both the sparse [λn = O(1)] and the
dense [λn →∞] regimes. Consistency is impossible to achieve
unless in the dense regime. In sparse case, can only claim that
the estimated labels are correlated with the truth better than
random guessing, but not that they are consistent.
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Contributions of this paper

1. Propose a fast pseudo-likelihood algorithm for fitting the
block model, as well as its variation conditional on node
degrees that allows for fitting networks with highly variable
node degrees within communities.

• Ignore the symmetry assumption in the adjacency matrix.
Apply block compression — divide the nodes into blocks and
only look at the likelihood of the row sums within blocks.

• Accurate and fast approximation for fitting a block model to
networks with tens of millions of nodes

2. Proof of consistency of one step of the algorithm

3. Propose spectral clustering with perturbations, a new
clustering method, used to initialize pseudo-likelihood in
practice.
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Algorithms
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Algorithms — Pseudo-likelihood

In principle, the joint likelihood of A and c can be maximized via
the EM algorithm. However, the E-step involves optimizing over all
possible label assignments — NP-hard. Instead, the authors come
up with a Pseudo-likelihood (PL) function and then estimate the
parameters.
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Algorithms — Pseudo-likelihood

• Introduce an initial labelling vector e = (e1, . . . , en),
ei ∈ {1, . . . ,K} — partitions the nodes into K groups

• The main quantity that we work with are the block sums
along the columns defined as:

bik =
∑
j

Aij1(ej = k)

for i = 1, . . . , n and k = 1, . . . ,K

• Let bi = (bi1, . . . , biK )

• bik = the number of neighbours of the ith node that belong
to the kth group
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Algorithms — Pseudo-likelihood

• Let R be the K × K matrix with

Rka =
1

n

n∑
i=1

1(ei = k , ci = a)

• Let Rk• = the kth row of R

• Let P•l = the l-th column of P — ( E
[
Aij

∣∣∣c] = Pcicj in SBM)

• Let λlk = nRk•P•l and Λ = {λlk}
• For each node i , conditional on labels c = (c1, . . . , cn) with
ci = l :

(A) {bi1, . . . , biK} are mutually independent.
(B) bik , is approximately poisson with mean λlk

• With true labels {ci} unknown, each bi can be viewed as a
mixture of Poisson vectors, identifiable if Λ has no identical
rows.
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Algorithms — Pseudo-likelihood

• Let λl =
∑

k λlk

• Ignore the dependence among {bi , i = 1, . . . , n}
• Use the Poisson assumption and treat {ci} as latent variable

and write the pseudo log-likelihood as follows:

`PL(π,Λ; {bi}) =
n∑

i=1

log
( K∑

l=1

πle
−λl

K∏
k=1

λbiklk

)
• Can be maximized via the EM algorithm for mixture models
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Algorithms — EM Algorithm for Pseudo-likelihood

• Initialize the parameters. (How to initialize e = (e1, . . . , en) ?)

• Repeat T times:

1. Compute the block sums {bil}
2. Using current parameter estimates {pi} and {Λ} , estimate

probabilities for node labels by

π̂il = PPL(ci = l |bi ) =
π̂l
∏K

m=1 exp(bim log λ̂lm − λ̂lm)∑K
k=1 π̂k

∏K
m=1 exp(bim log λ̂km − λ̂km)

3. Given label probabilities, update parameter values as follows:

π̂l =
1

n

n∑
i=1

π̂il , λ̂lk =

∑
i π̂ilbik∑
i π̂il

4. Return to 2 unless the parameter estimates have converged.
5. Update labels by ei = arg maxl π̂il and return to 1

6. Update P̂ by P̂lk =
∑

i,j Aij π̂il π̂jk∑
i 1(ei=k)

∑
j 1(ej=k)
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Algorithms — PL Conditional on Node Degrees

• For networks with hub nodes or those with substantial degree
variability within communities, the block model can provide a
poor fit.

• Divides the nodes into low-degree and high-degree groups

• Supported empirically and by theory.

• What to do:

(a) Extension to the degree-corrected SBM — has an extra degree
parameter for every node which has to be estimated —
difficult to write down a PL and use EM

(b) In this paper, the authors consider the PL conditional on the
observed node degrees — Whether these degrees are similar or
not will not then matter, and the fitted parameters will reflect
the underlying block structure rather than the similarities in
degrees.
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Algorithms — EM for CPL

The conditional pseudo-likelihood can be obtained using the
following observation:

• If random variables Xk are independent Poisson with means
µk , their distribution conditional on

∑
k X is multinomial.

Thus

• The distribution of (bi1, . . . , biK ) conditional on labels c with
ci = l and the node degree di =

∑
k bik , is multinomial with

parameters (di ; θl1, . . . , θlK ), where θlK = λlk
λl

• The conditional pseudo log-likelihood is then given by:

`CPL(π,Θ; {bi}) =
n∑

i=1

log
( K∑

l=1

πl

K∏
k=1

θbiklk

)
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Algorithms — EM for CPL

Now modify steps 2 and 3 of the unconditional EM algorithm to

1. based on current parameter estimates {pi} and
{
θ̂lk

}
,

estimate probabilities for node labels by

π̂il = PCPL(ci = l |bi ) =
π̂l
∏K

m=1 θ̂
bim
lm∑K

k=1 π̂k
∏K

m=1 θ
bim
km

2. Given label probabilities, update parameter values as follows:

π̂l =
1

n

n∑
i=1

π̂il , λ̂lk =

∑
i π̂ilbik∑
i π̂ildi
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Algorithms — Initialization of e

Clustering based on 1- and 2-degrees

• Separate the nodes by degree using a clustering algorithm
such as the one-dimensional k-means

• Works for only a certain type of block models, identifiable
from their degree distribution

• In this paper, the authors consider a two-dimensional K-means
clustering on the degree and the number of paths of length 2
from node i
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Algorithms — Initialization of e

Spectral clustering

• Based on the spectral properties of the adjacency matrix A or
its graph Laplacian.

• Let D = diag(d1, . . . , dn) — diagonal matrix collecting node
degrees.

• Look at the eigenvalues of the normalized graph Laplacian
L = D−1/2AD−1/2

• Choose a small number, say r = K − 1 of the eigenvectors
corresponding to the r largest eigenvalues with the largest
omitted.

• These vectors provide an r -dimensional representation of the
nodes.

• Apply K-means to find clusters.
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Algorithms — Initialization of e

Spectral clustering with perturbations

• The authors found that spectral clustering performs poorly for
community detection for sparse graphs with expected degree
λ < 5

• They provide a modification: Connect all disconnected
components which belong to the same community by adding
artificial ”weak” links.

• Regularize the adjacency matrix A by adding α/p × λ/n
multiplied by the adjacency matrix of an ErdosRenyi graph on
n nodes with edge probability p, where α is a constant.

• Found α/p = 0.25 and p = 1 works well for their range of
simulations.

• Now do the usual steps of the spectral clustering.

21 / 32



Numerical Results



Numerical Results

• Simulate two scenarios: SBM and degree-corrected SBM

• Fix K = 3 and π = (1/3, 1/3, 1/3)

• Conditional on the labels the edges are generated as

independent Bernoulli r.v.s with E
[
Aij

∣∣∣c] = θiθjPcicj

• The parameters θj are drawn independently from the
distribution of Θ with P(Θ = 0.2) = ρ and P(Θ = 1) = 1− ρ

• ρ = 0 corresponds to the regular block model and ρ = 0.9
corresponds to a network where 10% of the nodes can be
viewed as hubs.
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Numerical Results

• Matrix P controlled by two parameters:

1. β = out-in-ratio — will be varied from 0 to 0.2
2. the weight vector w which determines the relative degrees

within communities — w = (1, 1, 1) contains no information
about communities in node degrees. w = (1, 5, 10), degrees
provide relevant information for clustering

• Also we will vary the overall expected network degree λ from
1 to 15

• P is constructed in such a way to have have λ as expected
degree:

P =
λ

(n − 1)(πTP(0)π)(E(Θ))2
P(0)

with P(0) = 1(β 6= 0)diag(w)β−1 + 1(β = 0)diag(w)
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Numerical Results

• To compare the results with the true labels use the normalized
mutual information (NMI):

NMI (c , e) = −
∑
i ,j

Rij log
Rij

Ri+R+j

(∑
i ,j

Ri ,j logRi ,j

)−1

• Always between 0 and 1 (perfect match)

• For n large, matching 50%, 70% and 90% corresponds to NMI
of approximately 0.12, 0.26, and 0.58
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Numerical Results

Figure : The NMI between true and estimated labels as a function of
”out-in-ratio” β
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Numerical Results

Figure : The NMI between true and estimated labels as a function of
average expected degree λ
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Numerical Results

Figure : The runtime in seconds as a function of the number of nodes
(loglog scale)
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Example: A Political Blogs
Network



A Political Blogs Network

• Dataset on political blogs after 2004 U.S. presidential election.

• Nodes are blogs, edges are hyperlinks between blogs.

• Each blog was manually labeled as liberal or conservative
(ground truth)

• Ignore direction of hyperlink

• Analyze the largest connected component which has 1222
nodes and average degree of 27

• The distribution of degrees is highly skewed to the right
(median degree is 13 and the maximum is 351)
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A Political Blogs Network

Figure : Political blogs data: true labels and unconditional and
conditional pseudo-likelihoods (UPL and CPL) initialized with spectral
clustering with perturbations (SCP). Node size is proportional to log
degree
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