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1 Overview

The topic of this lecture is exchangeability of random variables and the associated representation
theorems. The flow of the lecture is roughly

1. Introduce the concept of exchangeability for both sets of random variables and arrays of
random variables.

2. Explain de Finetti’s representation theorem for exchangeable sets of random variables, and

3. Explain the Aldous-Hoover representation theorem for exchangeable arrays.

2 Review of Exchangeability and Conditional Independence

We begin with a few simple examples:

Example 1. Suppose we wish to model the age, weight and height of individuals in a population
as a random variable; writing the random variable for the ith individual as Xi = (Ai, Hi,Wi).
An (unqualified) independence assumption is probably not appropriate here: if, for instance, we
measure the heights of the first 100 individuals this information will impact our prediction of the
height of the 101st individual. However, the sequence of random variables X1, X2, . . . can be
assumed to be exchangeable in the sense that our inferences do not depend on the order in which
we observed the individuals.

Example 2. If we wish to make inferences about the weather we might measure the peak tem-
perature and humidity each day, denoting these values for the ith day as Xi. In this case an
exchangeability assumption would not be appropriate because, for instance, if we want to predict
the temperature on the 21st day the temperature on the 20th day is relevant in a different way
than the temperature on the 15th day. However, it may be appropriate to assume a translation
symmetry here: Pr (X1, X2, . . . ) = Pr (Xk+1, Xk+2, . . . ). The physical content of this equation is
that the absolute values of the labeling indices are not significant, only the distance between them
matters; i.e. it does not matter if the calendar starts at day 0 or at day k.

Example 3. If we model symmetric connections between people i and j as a random variable Xij

then it is reasonable to model the joint distribution of the observations as invariant under joint
permutations σ of the indices, Xij → Xσ(i),σ(j). For instance, if we want to model the relationships
between people A,B,C then this assumption would imply in particular:

Pr
X

 xAA xAB xAC
xAB xBB xBC
xAC xBC xCC

 = Pr
X

 xAA xAC xAB
xAB xCC xBC
xAB xBC xBB

 ,
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i.e. that the distribution is invariant under swapping the labels B and C.

In this lecture we are interested in the types of probabilistic symmetry present in the 1st and 3rd
examples. To that end we now give a more formal definition of exchangeability,

Definition. Let X = (X1, X2, . . . ) be a set of random variables on a space S,1 then we say that
X is exchangeable when any of the following equivalent conditions hold:

1. For all permutations π : N→ N it holds that X1, X2, . . .
d
= Xπ(1), Xπ(2), . . .

2. ∀n ∈ N and ∀π ∈ Sn the group of permutations of [n] = {1, . . . n} it holds that X1, . . . , Xn
d
=

Xπ(1), . . . , Xπ(n)

3. ∀n ∈ N and distinct k1, . . . kn ∈ N it holds that X1, . . . , Xn
d
= Xk1 , . . . , Xkn

4. ∀A1, . . . An ⊆ S st Ai are measurable and ∀π ∈ Sn it holds that

Pr (X1 ∈ A1, . . . , Xn ∈ An) = Pr
(
Xπ(1) ∈ A1, . . . , Xπ(n) ∈ An

)
or equivalently

Pr (X1 ∈ A1, . . . , Xn ∈ An) = Pr
(
X1 ∈ Aπ(1), . . . , Xn ∈ Aπ(n)

)
.

That 2 implies 1 is a consequence of the Kolmogorov extension theorem.

Our short term goal is an explanation of de Finetti’s representation theorem. This is going to
require a careful statement of what it means for a set of random variables to be conditionally i.i.d.
We first give the unconditional definition as a warm up,

Definition 4. A setX1, X2, . . . of random variables defined on S is independent if for all measurable
A1, . . . An ∈ S it holds thatPr (X1 ∈ A1, . . . , Xn ∈ An) =

∏n
i=1 Pr (Xi ∈ Ai)

Definition 5. A set X1, X2, . . . of random variables defined on S is independently identically
distributed (iid) if for all measurable A1, . . . An ∈ S it holds thatPr (X1 ∈ A1, . . . , Xn ∈ An) =∏n
i=1 Pr (X1 ∈ Ai)

Conditional independence is nearly identical notationally but conceptually trickier. The key point
is that if θ : S → T is some random variable than Pr (X1 ∈ A|θ) is itself a random variable (mapping
from S to [0, 1]). Indeed, we can define a random measure νθ1 on S by taking νθ1 (A) = Pr (X1 ∈ A|θ)
for all A ∈ σ (S).2 Any particular realization of this random variable is a measure on S and νθ1 is
a measurable function from the domain of theta to the space of measures on S.

Definition 6. A set X1, X2, . . . of random variables defined on S is independent conditional on
random variable θ if for all measurable A1, . . . An ∈ S it holds that Pr (X1 ∈ A1, . . . , Xn ∈ An|θ) =∏n
i=1 Pr (Xi ∈ Ai|θ)

Definition 7. A set X1, X2, . . . of random variables defined on S is independently identically
distributed (iid) conditional on random variable θ if for all measurable A1, . . . An ∈ S it holds
thatPr (X1 ∈ A1, . . . , Xn ∈ An|θ) =

∏n
i=1 Pr (X1 ∈ Ai|θ) =

∏n
i=1 ν

θ
1 (Ai)

1Assume S is a Polish space if you’re fussed about such things.
2σ (S) denotes the sigma algebra of S.
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Notice that, in contrast to the unconditional case, these definitions deal with the equality of random
variables.

Also notice that many different random variables θ can result in the same random measure νθ. For
example, suppose we were interested in conditioning on a normally distributed random variable
with fixed variance Λ and random mean K + L. In this case we might take θ = (K,L). However,
we might instead have chosen distinct random variables W and Z such that K + L = W + Z and
conditioned on random variable θ̃ = (W,Z). For this model

Pr (X1 ∈ A|θ) = Pr
(
X1 ∈ A|θ̃

)
∀ measureable A ⊆ S

and the corresponding random measures νθ and ν θ̃ are equal. This suggests an obvious canonical
choice of random variable to condition on: the random measure ν itself. That is, we have

νθ = ν θ̃ = ν and

Pr (X1 ∈ A|θ) = Pr
(
X1 ∈ A|θ̃

)
= Pr (X1 ∈ A|ν) ∀ measureable A ⊆ S

3 de Finetti’s Representation Theorem

Notice that if the set X1, X2, . . . is iid conditional on the random measure ν then

Pr (X1 ∈ A1, . . . Xn ∈ An) = Eν [Pr (X1 ∈ A1, . . . Xn ∈ An|ν)]

= Eν

[
n∏
i=1

ν (Ai)

]
,

from which it is immediately manifest that X1, X2, . . . is exchangeable. That is, conditional iid
implies exchangeability. The remarkable content of de Finetti’s eponymous theorem is that these
two things are in fact equivalent:

Theorem 8. (de Finetti, Hewitt-Savage) Let X1, X2, . . . be an infinite sequence of random variables
on S. The following are equivalent:

1. X is exchangeable, i.e. (X1, X2, . . . )
d
=
(
Xπ(1), Xπ(2), . . .

)
∀π ∈ S∞

2. X is conditionally iid; i.e. there exists a random measure ν such that ∀n ∈ N Pr (X1 ∈ A1, . . . , Xn ∈ An|ν) =∏n
i=1 ν (Ai)

This theorem is often alternatively phrased as saying that exchangeability implies that ∀n ∈ N

Pr (X1 ∈ A1, . . . , Xn ∈ An) =

ˆ
v

n∏
i=1

v (Ai)µ (dv) ,

where µ is a measure on the space of random measures on S.

To build intuition for what this means lets consider a concrete example. We can model flipping a
(not necessarily fair) coin by assigning a random variable

Xi =

{
0 tails

1 heads
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to the ith flip. An unconditional independence assumption is inappropriate for this situation: if
the coin is flipped once and comes up heads then, in the absence of any relevant prior knowledge,
we should bet that the second toss will also be heads. However, an exchangeability assumption is
reasonable: we will base our inferences on the number of observed heads and tails, but not on the
order in which they occurred. In the language of de Finetti’s theorem we then have that

Pr (X1 = x1, . . . , Xn = xn|ν) =

n∏
i=1

ν (xn)

where xj ∈ {0, 1} and ν is a random measure on {0, 1}. In this particular instance the collection of
random measures has a simple parametric form: a realization of ν is a Bernoulli distribution. Since
Bernoulli distributions are indexed by a single parameter p ∈ [0, 1] we have a simple correspondence

ν ∈R {Bern (p)}p∈[0,1] ↔ ν = Bern (p) , p ∈R [0, 1] , whence

Pr (X1 = x1, . . . , Xn = xn) =

ˆ
v

n∏
i=1

v (xn)µ (dv)

=

ˆ
[0,1]

n∏
i=1

pxi (1− p)1−xi F (dp)

=

ˆ
[0,1]

pS (1− p)n−S F (dp) , S =

n∑
i=1

Xi.

This recovers the familiar treatment of repeated flips of a biased coin given in introductory prob-
ability courses: conditional on the “propensity” p of the coin the number of heads in n flips is
Bin (n, p). If we do not know the parameter p then we must integrate it out.

de Finetti’s theorem can enable very powerful models even in cases where the random measure ν
lacks a simple form, or even a finite dimensional representation. Dirichlet process models (e.g. DP
mixture models) are a well developed example of this.

4 Exchangeable Graphs and Arrays

We now turn to the treatment of exchangeable arrays. Here we’ll be dealing with random variables
Xij that we think of as representing some (symmetric) relation between units i and j. These can
generally be thought of as edges of some graph. We are interested in infinite exchangeable arrays of
these things, with the exposition of the corresponding representation theorem as our goal for this
section.

Definition 9. A random array X = {Xij}i,j∈N is jointly exchangeable if for every permutation π
of N,

{Xij}i,j∈N
d
=
{
Xπ(i)π(j)

}
i,j∈N .

A random graph is called jointly exchangeable if its adjacency matrix is jointly exchangeable.

To build some intuition we consider a series of examples:

Example 10. Xij = 0 for i < j is trivially jointly exchangeable, since every distinct pair of units
is disconnected.
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EXCHANGEABILITY FOR CORRESPONDING ARRAYS
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Figure 1: This represents a particular permutation of the labels of the vertices of a random graph.
If the distribution of the random graph is invariant under all such permutations then it is jointly
exchangeable.

Example 11. Xij = (j − i) mod 2 is not jointly exchangeable.

Example 12. Xij
iid∼ Bern (p) is jointly exchangeable.

Example 13. Xij |p iid∼ Bern (p) is jointly exchangeable.

Example 14. Xij |N iid∼ Bern (σ (〈Ni, Nj〉)), where Ni
iid∼ N (µ,Λ), 〈, 〉 denotes inner product and

σ : R→ [0, 1]. This model is also exchangeable. (nb. this is closely related to the eigenmodel).

To state the representation theorem corresponding to this flavour of exchangeability we will need
one final definition:

Definition 15. Let U1, U2, . . . be iid uniform random variables in [0, 1]. Let Θ : [0, 1]2 → [0, 1] be
a symmetric measurable function and let

Xij = 1 with probability Θ (Ui, Uj)

independently for all i < j ∈ N. A Θ-random graph is an array with the same distribution as X.
A graphon is a symmetric measurable function from [0, 1]2 to [0, 1]. See figure 2.

Example 14 is an example of a Θ-random graph, with

Θ (·, ·) = σ
(
〈Φ−1 (·) ,Φ−1 (·)〉

)
,

where Φ−1 (·) is the pseudo-inverse of the N (µ,Λ) cumulative distribution function. That is,

Φ−1 (·) is the function such that Φ−1 (Ui)
d
= Ni where Ui ∼ U [0, 1] and Ni ∼ N (µ,Λ). This
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RECAP: EXCHANGEABLE ARRAY REPRESENTATION

Representation results inspire a generic modelling recipe

e.g., Binary networks
⇥ - Adjacency matrix approximated by function on unit square
Ui - Each node associated with a latent variable in [0, 1]

Wij := ⇥(Ui, Uj) - Evaluation of approximate adjacency matrix
Xij ⇠ Bernoulli(Wij) - Bernoulli likelihood (can be shown to be general)

⇥ can be pictured as a blurred adjacency matrix

0
0

1
1

U1

U1

U2

U2

0

1

Pr{X12 = 1}
⇥

James Lloyd 14 / 45Figure 2: A pictorial representation of the construction of a Θ-random graph. Θ is defined on
[0, 1]2 with value indicated by greyscale value. To determine the value of Xij we select coordinates
U1 and U2 then flip a weighted coin with weight Θ (U1, U2).

example makes it clear that the choice of uniformly random variables in the definition of Θ-random
graph is arbitrary: any atom-free distribution3 would work equally well.

It is easy to see that any Θ-random graph is exchangeable. The content of the representation
theorem is that exchangeability also implies that the graph is conditionally Θ-random:

Theorem 16. (Aldous, Hoover) Let X = (Xij)i,j∈N be the adjacency matrix of an undirected graph
on N. The following are equivalent:

1. X is jointly exchangeable.

2. X is conditionally Θ-random, given a random graphon Θ.

Example 17. Erdős-Renyi graphs are Θ-random graphs with Θ (Ui, Uj) = p, a constant function.

Example 18. Let Y1, Y2, . . . be a Pólya urn. Let φ : N2 → N be a bijection and let Xij = Yφ(i,j).
Then since the Pólya urn is exchangeable we can conclude that the random graph Xij is jointly
exchangeable, and thus by the representation theorem it is conditionally Θ-random. In this case
Θ (Ui, Uj) = p where p ∼ U [0, 1].

We end by noting that in contrast to de Finetti’s theorem the random graphon of the Aldous-
Hoover representation theorem is not unique. To see this let T : [0, 1]→ [0, 1] be a transformation

such that T (U)
d
= U and let

ΘT (U1, U2) = Θ (T (U1) , T (U2)) .

It is easy to see that ΘT -random graph and a Θ-random graph will have the same distribution,
thereby ruling out uniqueness.

3g is atom free if X1 ∼ g, X2 ∼ g =⇒ Pr (X1 = X2) = 0
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