Nonparametric Bayesian statistics with exchangeable random structures

Daniel M. Roy

University of Cambridge

October 2014

Thanks to
Nate Ackerman (Harvard) James R. Lloyd (Cambridge)
Cameron Freer (MIT/Analog) Zoubin Ghahramani (Cambridge)
Peter Orbanz (Columbia) Sara Wade (Cambridge)

Influenced especially by work of Aldous, de Finetti, Kallenberg, Lovász, Schervish, and others.
Statistical Machine Learning

Given some data X_1, X_2, \ldots
identify hidden structure/patterns
in order to predict future or missing data.
1. (height, weight, age) of students

\[X = \begin{align*}
171\text{cm} & \quad 65\text{kg} & \quad 21 \\
182\text{cm} & \quad 70\text{kg} & \quad 19 \\
170\text{cm} & \quad \ ? & \quad 20 \\
\vdots & \quad \vdots & \quad \vdots
\end{align*} \]

2. daily average (temperature, humidity, rainfall) in Guanajuato

\[X = \begin{align*}
21^\circ\text{C} & \quad 40\% & \quad 0\text{cm} \\
27^\circ\text{C} & \quad 50\% & \quad 0\text{cm} \\
30^\circ\text{C} & \quad 60\% & \quad \ ? \\
\vdots & \quad \vdots & \quad \vdots
\end{align*} \]

3. \(X = \) scores/ratings for movies by users

\[X = \begin{align*}
5 & \quad 5 & \quad 5 & \quad 3 & \quad 2 & \quad \ldots \\
2 & \quad 1 & \quad 2 & \quad 5 & \quad 5 & \quad \ldots \\
5 & \quad \ ? & \quad 5 & \quad 2 & \quad 3 & \quad \ldots \\
\vdots & \quad \vdots
\end{align*} \]

Is there structure in the data?
What structure is in the data?

1. \[\{ \Box, \Box, \Box, \Box, \Box, \cdots \} \]

2. \[\Box \rightarrow \Box \rightarrow \Box \rightarrow \Box \rightarrow \Box \cdots \]

3. \[\begin{array}{c}
\text{movies} \\
\{ \Box, \Box, \Box, \Box, \Box, \cdots \} \\
\text{users} \\
\{ \Box, \Box, \cdots \} \\
\vdots \\
\ddots \\
\vdots \\
\end{array} \]
Is there even more structure in the data?

1. \[P\left(\begin{array}{ccc} 171\text{cm} & 65\text{kg} & 21 \\ 182\text{cm} & 70\text{kg} & 19 \\ 170\text{cm} & ? & 20 \end{array}\right) \overset{?}{=} P\left(\begin{array}{ccc} 182\text{cm} & 70\text{kg} & 19 \\ 171\text{cm} & 65\text{kg} & 21 \\ 170\text{cm} & ? & 20 \end{array}\right) \]
 (Swapped top and middle row.)

2. \[P\left(\begin{array}{ccc} 21^\circ\text{C} & 40\% & 0\text{cm} \\ 27^\circ\text{C} & 50\% & 0\text{cm} \\ 30^\circ\text{C} & 60\% & ? \end{array}\right) \overset{?}{=} P\left(\begin{array}{ccc} 27^\circ\text{C} & 50\% & 0\text{cm} \\ 21^\circ\text{C} & 40\% & 0\text{cm} \\ 30^\circ\text{C} & 60\% & ? \end{array}\right) \]
 (Swapped top and middle row.)

3. \[P\left(\begin{array}{ccc} 5 & 5 & 5 & 3 & 2 \\ 2 & 1 & 2 & 5 & 5 \\ 5 & 4 & 5 & 2 & 3 \end{array}\right) \overset{?}{=} P\left(\begin{array}{ccc} 2 & 1 & 2 & 5 & 5 \\ 5 & 5 & 5 & 3 & 2 \\ 5 & 4 & 5 & 2 & 3 \end{array}\right) \]
 (Swapped top and middle row.)
 \[\overset{?}{=} P\left(\begin{array}{ccc} 1 & 2 & 2 & 5 & 5 \\ 5 & 5 & 5 & 3 & 2 \\ 4 & 5 & 5 & 2 & 3 \end{array}\right) \]
 (Swapped first and second columns.)
 \[\overset{?}{=} P\left(\begin{array}{ccc} 5 & 5 & 2 & 2 & 1 \\ 5 & 5 & 5 & 3 & 2 \\ 5 & 5 & 4 & 3 & 2 \end{array}\right) \]
 (Sorted each row.)
Probabilistic symmetries

1. **Exchangeable sequence**
 \[\mathbb{P}[(X_1, X_2, \ldots, X_n)] = \mathbb{P}[(X_4, X_n, \ldots, X_1)] = \mathbb{P}[(X_{\pi(1)}, \ldots, X_{\pi(n)})] \]
 Invariance to permutation.

2. **Stationary sequence**
 \[\mathbb{P}[(X_1, X_2, \ldots)] = \mathbb{P}[(X_4, X_5, \ldots)] = \mathbb{P}[(X_{k+1}, X_{k+2}, \ldots)] \]
 Invariance to shift.

3. **Exchangeable array**
 \[\mathbb{P} \begin{bmatrix} X_{1,1} & X_{1,2} & \cdots \\ X_{2,1} & X_{2,2} & \cdots \\ X_{3,1} & X_{3,2} & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix} = \mathbb{P} \begin{bmatrix} X_{\pi(1),\tau(1)} & X_{\pi(1),\tau(2)} & \cdots \\ X_{\pi(2),\tau(1)} & X_{\pi(2),\tau(2)} & \cdots \\ X_{\pi(3),\tau(1)} & X_{\pi(3),\tau(2)} & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix} \]
 Invariance to separate permutation of rows and columns.

What is the most general way to model data assuming these symmetries?
Goals of this tutorial

1. Give a review of exchangeability in several forms.
2. Link each type of exchangeability to a representation theorem.
3. Explain how to interpret these representation theorems in their various forms.
4. Convey that probabilistic symmetries are an important consideration when constructing a statistical model.

Tutorial Outline

1. Exchangeable sequences.
2. Exchangeable graphs and arrays.
A rigorous account requires measure theory.

1. All spaces are complete, separable metric spaces, equipped with their Borel \(\sigma \)-algebras.
2. All functions and sets are measurable.
3. Some necessary details will appear in a light gray color like this. Ignore these for now, and go back and study them later to understand the material at a greater depth.
4. I will define the “naturals” to be \(\mathbb{N} := \{1, 2, \ldots \} \).
Definition (exchangeable sequences)
Let \(X_1, X_2, \ldots \) be a sequence of random variables taking values in a space \(S \). We say the sequence is exchangeable when, for every permutation \(\pi \) of \(\mathbb{N} \),

\[
(X_1, X_2, \ldots) \overset{d}{=} (X_{\pi(1)}, X_{\pi(2)}, \ldots) \tag{1}
\]

What does Eq. (1) mean?

\[\iff\]

\[
\text{for all } n \in \mathbb{N}, \quad (X_1, \ldots, X_n) \overset{d}{=} (X_{\pi(1)}, \ldots, X_{\pi(n)}). \tag{2}
\]

\[\iff\]

\[
\text{for all } n \in \mathbb{N}, \text{ and distinct } k_1, \ldots, k_n \in \mathbb{N}, \quad (X_1, \ldots, X_n) \overset{d}{=} (X_{k_1}, \ldots, X_{k_n}). \tag{3}
\]

\[\iff\]

\[
\text{for all } n \in \mathbb{N}, \text{ and permutations } \pi \text{ of } [n] := \{1, 2, \ldots, n\}, \quad (X_1, \ldots, X_n) \overset{d}{=} (X_{\pi(1)}, \ldots, X_{\pi(n)}). \tag{4}
\]
Definition (exchangeable sequences)
Let X_1, X_2, \ldots be a sequence of random variables taking values in a space S. We say the sequence is exchangeable when, for every $n \in \mathbb{N}$ and permutation π of $[n]$,

\[
(X_1, \ldots, X_n) \overset{d}{=} (X_{\pi(1)}, \ldots, X_{\pi(n)})
\]

What does Eq. (1) mean?

\iff for all subsets $A_1, \ldots, A_n \subseteq S$,

\[
P\{X_1 \in A_1, \ldots, X_n \in A_n\} = P\{X_{\pi(1)} \in A_1, \ldots, X_{\pi(n)} \in A_n\}.
\]

\iff for all subsets $A_1, \ldots, A_n \subseteq S$,

\[
P\{X_1 \in A_1, \ldots, X_n \in A_n\} = P\{X_1 \in A_{\pi(1)}, \ldots, X_n \in A_{\pi(n)}\}.
\]

Invariance of the distribution.
EXAMPLES OF EXCHANGEABLE SEQUENCES

i.i.d. sequences are exchangeable

Recall that a sequence X_1, X_2, \ldots of random variables is **independent** when

$$
\mathbb{P}\{X_1 \in A_1, \ldots, X_n \in A_n\} = \prod_{i=1}^{n} \mathbb{P}\{X_i \in A_i\},
$$

(4)

for all $n \in \mathbb{N}$ and subsets $A_1, \ldots, A_n \subseteq S$,

and is **independent and identically distributed (i.i.d.)** when

$$
\mathbb{P}\{X_1 \in A_1, \ldots, X_n \in A_n\} = \prod_{i=1}^{n} \mathbb{P}\{X_1 \in A_i\} = \prod_{i=1}^{n} \mu(A_i),
$$

(5)

where $\mu = \mathbb{P}\{X_1 \in \cdot\}$ is the marginal distribution of every element.

We will say that X_1, X_2, \ldots is i.i.d.-μ.

For every permutation π of $[n] = \{1, 2, \ldots, n\}$.

$$
\prod_{i=1}^{n} \mu(A_{\pi(i)}) = \prod_{i=1}^{n} \mu(A_i)
$$

(6)
Examples of Exchangeable Sequences

conditionally i.i.d. sequences are exchangeable

Recall that a sequence X_1, X_2, \ldots of random variables is **conditionally independent** when there is a random variable θ such that a.s.

$$\mathbb{P}[X_1 \in A_1, \ldots, X_n \in A_n \mid \theta] = \prod_{i=1}^{n} \mathbb{P}[X_i \in A_i \mid \theta],$$

(7)

for all $n \in \mathbb{N}$ and $A_1, \ldots, A_n \subseteq S$, and is **conditionally i.i.d.** given θ when a.s.

$$\mathbb{P}[X_1 \in A_1, \ldots, X_n \in A_n \mid \theta] = \prod_{i=1}^{n} \mathbb{P}[X_1 \in A_i \mid \theta] = \prod_{i=1}^{n} \nu(A_i),$$

(8)

where $\nu := \mathbb{P}[X_1 \in \cdot \mid \theta]$ is the (random) marginal distribution, conditioned on θ.

Note that the sequence is also conditionally i.i.d.-ν given ν.

Let X_1, X_2, \ldots be conditionally i.i.d.-ν given ν. Let $n \in \mathbb{N}$, π a permutation of $[n]$.

$$\mathbb{P}\{X_{\pi(1)} \in A_1, \ldots, X_{\pi(1)} \in A_n\}$$

(9)

$$= \mathbb{E}\left(\mathbb{P}[X_{\pi(1)} \in A_1, \ldots, X_{\pi(1)} \in A_n \mid \nu]\right) = \mathbb{E}\left(\prod_{i=1}^{n} \nu(A_i)\right)$$

(10)
Pólya’s urn

Let $S = \{0, 1\}$. Let $\mathbb{P}\{X_1 = 1\} = \mathbb{P}\{X_1 = 0\} = 1/2$. In other words,

$$X_1 \sim \text{Bernoulli}(1/2)$$

(11)

Let $S_n = X_1 + \cdots + X_n$.

$$\mathbb{P}[X_{n+1} = 1 | X_1, \ldots, X_n] = \frac{S_n + 1}{n + 2}.$$

(12)

In other words,

$$X_{n+1} | X_1, \ldots, X_n \sim \text{Bernoulli}(\frac{S_n + 1}{n + 2})$$

(13)

$1\ 0\ 1\ 1\ 0$? \hspace{1cm} $\mathbb{P}\{1\ \text{next} | \text{seen 10110}\} = \frac{3+1}{5+2}$.

Examples of Exchangeable Sequences

Pólya’s urn

\[X_1 \sim \text{Bernoulli}(1/2) \quad \text{(14)} \]

\[X_{n+1} \mid X_1, \ldots, X_n \sim \text{Bernoulli}(\frac{S_n+1}{n+2}), \quad \text{for } n \in \mathbb{N}. \quad \text{(15)} \]

Note that each element \(X_{n+1} \) depends on all previous elements. No independence!

Let \(x_1, \ldots, x_n \in \{0, 1\} \) and define \(s_j = x_1 + \cdots + x_j \).

\[
\mathbb{P}\{X_1 = x_1, X_2 = x_2, \ldots, X_n = x_n\} \\
= \mathbb{P}\{X_1 = x_1\} \cdot \mathbb{P}\{X_2 = x_2 \mid X_1 = x_1\} \cdots \mathbb{P}\{X_n = x_n \mid X_1 = x_1, \ldots, X_{n-1} = x_{n-1}\} \\
= \left(\frac{1}{2}\right) \cdot \left(\frac{s_1 + 1}{3}\right)^{x_2} \left(\frac{2 - s_1}{3}\right)^{1-x_2} \cdots \left(\frac{s_{n-1} + 1}{n+1}\right)^{x_n} \left(\frac{n - 1 - s_{n-1}}{n+1}\right)^{1-x_n} \\
\mathbb{P}\{X_1 = x_1\} \quad \mathbb{P}\{X_2 = x_2 \mid X_1 = x_1\} \quad \cdots \quad \mathbb{P}\{X_n = x_n \mid X_1 = x_1, \ldots, X_{n-1} = x_{n-1}\} \\
= \frac{(s_n)! (n - s_n)!}{(n + 1)!} \quad \text{this is invariant to permutation, hence exchangeable!} \quad \text{(19)}
EXCHANGEABLE SEQUENCES

Theorem (de Finetti; Hewitt-Savage)

Let $X = (X_1, X_2, \ldots)$ be an infinite sequence of random variables in a space S. The following are equivalent:

1. X is exchangeable.
2. X is conditionally i.i.d.

Exchangeable:

$$(X_1, X_2, \ldots) \overset{d}{=} (X_{\pi(1)}, X_{\pi(2)}, \ldots), \quad \text{for } \pi \in S_\infty \quad (20)$$

Conditionally i.i.d.: \exists random variable θ s.t., for all n and A_i,

$$\mathbb{P}[X_1 \in A_1, \ldots, X_n \in A_n \mid \theta] = \prod_{i=1}^{n} \mathbb{P}[X_1 \in A_i \mid \theta] \text{ a.s.} \quad (21)$$

Equivalently, \exists random probability measure ν s.t., for all n and A_i,

$$\mathbb{P}[X_1 \in A_1, \ldots, X_n \in A_n \mid \nu] = \prod_{i=1}^{n} \nu(A_i) \text{ a.s.} \quad (22)$$

Taking expectations, $\mathbb{P}\{X_1 \in A_1, \ldots, X_n \in A_n\} = \mathbb{E}\left(\prod_{i=1}^{n} \nu(A_i)\right). \quad (23)$

Mixed i.i.d.: \exists distribution ν (the de Finetti mixing measure) s.t., for all n and A_i,

$$\mathbb{P}\{X_1 \in A_1, \ldots, X_n \in A_n\} = \int \prod_{i=1}^{n} \nu(A_i) \mu(d\nu) \quad (24)$$
\[X_1 \sim \text{Bernoulli}(1/2) \quad (25) \]
\[X_{n+1} \mid X_1, \ldots, X_n \sim \text{Bernoulli}\left(\frac{S_n + 1}{n+2}\right), \quad \text{for } n \in \mathbb{N}. \quad (26) \]

Exchangeable:
\[\mathbb{P}\{X_1 = x_1, \ldots, X_n = x_n\} = \frac{(s_n)!(n-s_n)!}{(n+1)!} \quad (27) \]

Conditionally i.i.d.: There is a random variable \(\theta \) s.t. a.s.
\[\mathbb{P}\{X_1 = x_1, \ldots, X_n = x_n \mid \theta\} = \prod_{i=1}^{n} \mathbb{P}\{X_1 = x_i \mid \theta\} \quad (28) \]
\[= \mathbb{P}\{X_1 = 1 \mid \theta\}^{s_n} \mathbb{P}\{X_1 = 0 \mid \theta\}^{n-s_n} \quad (29) \]
\[= \nu_1^{s_n} (1 - \nu_1)^{n-s_n} \quad (30) \]

where \(\nu_1 = \mathbb{P}\{X_1 = 1 \mid \theta\} \). Note that \((X_n)_{n \in \mathbb{N}} \) is conditionally i.i.d. given \(\nu_1 \).

Are \(\theta \) and \(\nu_1 \) different? How are they related?

Mixed i.i.d.: Let \(\mu \) be the distribution of \(\nu_1 \). Taking expectations,
\[\mathbb{P}\{X_1 = x_1, \ldots, X_n = x_n\} = \int_0^1 \varphi^{s_n} (1 - \varphi)^{n-s_n} \mu(d\varphi) \quad (31) \]
Equating expressions for \(\mathbb{P}\{X_1 = x_1, \ldots, X_n = x_n\} \) implies \(\mu = \text{Uniform}[0,1]! \).
Pólya’s urn:

\[X_1 \sim \text{Bernoulli}(1/2) \]

\[X_{n+1} \mid X_1, \ldots, X_n \sim \text{Bernoulli}\left(\frac{S_{n+1}}{n+2}\right), \quad \text{for } n \in \mathbb{N}. \]

Beta-Bernoulli process:

\[\nu_1 \sim \mu \]

\[X_n \mid \nu_1 \overset{iid}{\sim} \text{Bernoulli}(\nu_1), \quad \text{for } n \in \mathbb{N}. \]

How are \(X = (X_n)_{n \in \mathbb{N}}, \mathbb{P}[X] \) and \(\nu_1, \mu = \mathbb{P}[\nu_1] \) related?

In what sense are \(\nu_1 \) and \(\mu \) uniquely determined by \(X \) and \(\mathbb{P}[X] \)?

- By the law of large numbers, and the disintegration theorem,

\[
\frac{1}{n} \sum_{j=1}^{n} X_j \longrightarrow \nu_1 \quad \text{as} \quad n \to \infty \quad \text{a.s.}
\]

- If \(\theta \) renders \(X \) conditionally i.i.d., then \(\nu_1 = g(\theta) \) a.s. for some function \(g \).
- If \(\mu' \) is a measure such that

\[
\mathbb{P}\{X_1 = x_1, \ldots, X_n = x_n\} = \int v^{s_n} (1 - v)^{n-s_n} \mu'(dv)
\]

then \(\mu' = \mathbb{P}[\nu_1] \).
Let $X = (X_n)_{n \in \mathbb{N}}$ be an exchangeable sequence in a space S.

Let $\widehat{P}_n = \frac{1}{n}(\delta_{X_1} + \cdots + \delta_{X_n})$ be the empirical measure.

Define a random measure ν on S by

$$\nu(A) = \lim_{n \to \infty} \widehat{P}_n(A) \quad \text{a.s.} \quad A \subseteq S. \quad (38)$$

Informally, $\nu = \lim_{n \to \infty} \widehat{P}_n$. Let $\mu = \mathbb{P}[\nu]$.

Then X is conditionally i.i.d. given ν. That is

$$X_n \mid \nu \overset{iid}{\sim} \nu \quad (39)$$

Uniqueness?

- If θ renders X conditionally i.i.d., then $\nu = g(\theta)$ a.s. for some function g.
- If μ' is a measure such that

$$\mathbb{P}\{X_1 \in A_1, \ldots, X_n \in A_n\} = \int \prod_{i=1}^{n} \nu(A_i) \mu'(d\nu) \quad (40)$$

then $\mu' = \mathbb{P}[\nu]$.
Definition (Statistical inference base/model)

1. Sample space \mathcal{X}.
2. Parametric family $\mathcal{P}_0 := \{P_\theta\}_{\theta \in T}$ of probability distributions on \mathcal{X} indexed by elements of T called parameters. T is called the parameter space.
3. Observed data $x^* \in \mathcal{X}$.
4. Loss function $L : T \times T \rightarrow \mathbb{R}$.

The risk of an estimator $\delta : S \rightarrow T$ for $t \in T$, is

$$R(\delta, \theta) = \mathbb{E}_{X \sim P_\theta}\{L(\theta, \delta(X))\} := \int_{\mathcal{X}} L(\theta, \delta(x)) P_\theta(dx)$$ (41)

Definition (Bayesian estimator)

Let θ be a random variable in T, with prior distribution π, and let $X | \theta \sim P_\theta$.

The Bayesian estimator minimizes the posterior expected loss:

$$\delta_\pi(x) := \arg \min_{\theta^* \in T} \mathbb{E}_{\theta \sim \mathbb{P}[\theta | X=x]}\{L(\theta, \theta^*)\}$$ (42)
Classic i.i.d. framework
Let $X_1, \ldots, X_n \overset{iid}{\sim} Q$, for an unknown distribution $Q \in \mathcal{Q}_0 := \{Q_{\theta}\}_{\theta \in T}$.

Say observations are \mathbb{R}-valued. We can formalize this as follows:

1. Sample space $\mathcal{X} = \mathbb{R}^n$
2. Parametric family $\mathcal{P} := \{Q^n_{\theta} : \theta \in T\}$, where Q^n is the n-fold product.

Let $(X_1, \ldots, X_n) \sim Q^n_{\theta}$, for an unknown $Q^n_{\theta} \in \mathcal{P}$.

Exchangeable observation
Let $(X_1, \ldots, X_n) \sim P$ be conditionally i.i.d., for an unknown distribution P.

Conditionally i.i.d. observation
Let $(X_1, \ldots, X_n) \mid \nu \sim \nu^n$ and $\nu \sim \mu$, for an unknown distribution μ.

Even as $n \to \infty$, data reflects only one realization ν from μ. The problem of estimating μ is “ill-posed” to the frequentist. The Bayesian gets 1 data point.

Bayesian approach in the i.i.d. framework
Let θ be a random variable with some prior. Then Q_{θ} is a random measure, and X_1, X_2, \ldots is an exchangeable sequence.
de Finetti’s philosophy

1. de Finetti rejected the idea of a parameter and argued there was no need to assume their existence.
2. He thought that probabilities should be specified only on observable quantities.
3. de Finetti’s theorem shows that conserved quantities (like the limiting frequency of 1’s) arise from symmetries and are random variables.
4. One can then interpret this in the classic sense (specifying a parameter and placing a prior on it), but there’s no need to do that. The underlying random measure ν is there whether you like it or not.

Subjectivism

1. Distribution represents subjective (personal) uncertainty.
2. Exchangeability \iff certainty that order of the data is irrelevant.
3. subjective distribution on data alone + exchangeability \implies conditionally i.i.d. distribution on ν is subjective as well.
4. Note: de Finetti’s holds only for infinite sequences, but subjectivist need only be unwilling to posit an upper bound on the data size and projectivity.
What does exchangeability have to do with *nonparametric* Bayesian statistics?

Bayesian

1. Model: $X_1, X_2, \ldots \overset{iid}{\sim} Q$ for unknown $Q \in Q_0$. Need prior on Q_0.
2. If $Q_0 = \{\text{Gaussian distributions on } \mathbb{R}\}$ then $Q_0 \cong \mathbb{R}^2$.
 Finite-dimensional space, hence parametric.
3. If $Q_0 = \{\text{All Borel probability measures on } \mathbb{R}\}$ then $Q_0 \cong \mathbb{R}^N$.
 Infinite-dimensional space, hence nonparametric.
4. Hard. But if you have a specific question to ask (e.g., what is $Q(A)$ for some set A?) then it’s possible.
5. Dirichlet process, Polya trees, Normalized Completely Random Measures, etc.

Subjectivist

1. Need a model for our data X_1, X_2, \ldots.
2. If we believe order is irrelevant, by exchangeability, it suffices to specify a prior measure μ on space of probability measures.
3. No further assumptions: support of μ must be all distributions.
 Hence μ will be a *nonparametric prior*.
So far we have...

1. Reviewed exchangeability for sequences.
2. Presented de Finetti’s representation theorem.
 Exchangeable if and only if conditionally i.i.d.
3. Discussed how to interpret de Finetti’s theorems in its various forms.
4. Shown that probabilistic symmetries lead to statistical models.
 Exchangeability leads to a Bayesian approach to the classic i.i.d. framework.

Tutorial Outline

1. Exchangeable sequences.
2. Exchangeable graphs and arrays.
Let $X = (X_{i,j})_{i,j \in \mathbb{N}}$ be the adjacency matrix of an undirected graph on \mathbb{N}.

Definition (jointly exchangeable array)

Call X (jointly) exchangeable when, for every permutation π of \mathbb{N},

$$
(X_{i,j})_{i,j \in \mathbb{N}} \overset{d}{=} (X_{\pi(i),\pi(j)})_{i,j \in \mathbb{N}}.
$$

(43)
Definition (jointly exchangeable array)

Call X **(jointly) exchangeable** when, for every permutation π of \mathbb{N},

$$(X_{i,j})_{i,j \in \mathbb{N}} \overset{d}{=} (X_{\pi(i),\pi(j)})_{i,j \in \mathbb{N}}. \quad (44)$$

equivalently

$$
\begin{pmatrix}
X_{1,1} & X_{1,2} & \cdots \\
X_{2,1} & X_{2,2} & \cdots \\
X_{3,1} & X_{3,2} & \cdots \\
\vdots & \vdots & \ddots
\end{pmatrix} \overset{d}{=}
\begin{pmatrix}
X_{\pi(1),\pi(1)} & X_{\pi(1),\pi(2)} & \cdots \\
X_{\pi(2),\pi(1)} & X_{\pi(2),\pi(2)} & \cdots \\
X_{\pi(3),\pi(1)} & X_{\pi(3),\pi(2)} & \cdots \\
\vdots & \vdots & \ddots
\end{pmatrix} \quad (45)
$$

In the case $X_{i,j} \in \{0, 1\}$, let $X^n = (X_{i,j})_{i,j \leq n}$. Then X is an exchangeable graph if for all $n \in \mathbb{N}$ and isomorphic graphs G, G' on $[n]$, $\mathbb{P}\{X^n = G\} = \mathbb{P}\{X^n = G'\}$.

$$
\mathbb{P}\left\{X^{10} = \begin{array}{cccccc}
2 & 1 & 10 \\
3 & 9 & 8 & 4 & 5 & 6
\end{array}\right\} = \mathbb{P}\left\{X^{10} = \begin{array}{cccccc}
7 & 2 & 9 \\
6 & 4 & 5 & 3 & 1 & 10
\end{array}\right\}
$$
- Links between websites
- Proteins that interact
- Products that customers have purchased
- Relational databases
EXAMPLES OF EXCHANGEABLE GRAPHS

Are the following graphs exchangeable?

Example

\[X_{i,j} := 0 \quad \text{for } i < j \in \mathbb{N}. \] \hspace{1cm} (46)

Yes.

Example

\[X_{i,j} := 1 \quad \text{for } i < j \in \mathbb{N}. \] \hspace{1cm} (47)

Yes.
Is the following graph exchangeable?

Example

\[X_{i,j} := (j - i) \mod 2, \quad \text{for } i < j \in \mathbb{N}. \] (48)

\[P\left\{ X^3 = 1 \rightarrow 2 \rightarrow 3 \right\} = P\left\{ X^3 = 1 \rightarrow 3 \rightarrow 2 \right\} \]

No.
Is the following graph exchangeable?

Example

Consider the graph with vertex set \(\mathbb{N} \) such that for every pair of vertices \(i, j \in \mathbb{N} \), we include the edge \(\{i, j\} \) independently with probability \(p \in [0, 1] \).

The adjacency matrix \(X \) is such that

\[
X_{i,j} \overset{iid}{\sim} \text{Bernoulli}(p) \quad \text{for } i < j \in \mathbb{N}.
\]

(49)

Let \(G \) be a graph on \([n]\). Then \(\mathbb{P}\{X^n = G\} = 2^{-\binom{n}{2}} \).

Yes.

The resulting graph is a so-called “Erdös-Rényi graph”.
Is the following graph exchangeable?

Example

Let $X_{1,2} \sim \text{Bernoulli}(1/2)$. Otherwise, let

$$X_{i,j} := X_{1,2} \quad \text{for } i < j \in \mathbb{N}. \quad (50)$$

Yes.
Is the following graph exchangeable?

Example

Let Y_1, Y_2, \ldots be a Pólya urn. Let $\phi : \mathbb{N}^2 \to \mathbb{N}$ be a bijection. Let

$$X_{i,j} := Y_{\phi(i,j)} \quad \text{for } i < j \in \mathbb{N}. \quad (51)$$

Yes.
Is the following graph exchangeable?

Example

Consider the graph built one vertex at a time, adding a vertex to a clique with probability proportional to the size of the clique, and creating a new (singleton) clique with probability proportional to a constant $\alpha > 0$.

Yes.

The process is just an graph version of the **Chinese restaurant process** and is very closely related to the **Infinite Relational Model** of Kemp et al. (2008).
Is the following graph exchangeable?

Example
Let $N = (N_1, N_2, \ldots)$ be an i.i.d. sequence Gaussian vectors in \mathbb{R}^D.
Let $\langle \cdot, \cdot \rangle$ be the dot product.
Let $\text{sigmoid} : \mathbb{R} \rightarrow [0, 1]$ be a squashing function.

$$X_{i,j} \mid N \overset{ind}{\sim} \text{Bernoulli}(\text{sigmoid}(\langle N_i, N_j \rangle)) \quad \text{for } i < j \in \mathbb{N}. \quad (52)$$

Yes.

This model is related to matrix factorization techniques, as well as the eigenmodel (Hoff 2008).
Let U_1, U_2, \ldots be i.i.d. uniform random variables in $[0, 1]$.

Definition (Θ-random graph)

Let $\Theta : [0, 1]^2 \rightarrow [0, 1]$ be a symmetric measurable function, and let

$$X_{i,j} := 1 \text{ with probability } \Theta(U_i, U_j) \quad (53)$$

independently for every $i < j \in \mathbb{N}$. By a Θ-random graph we mean an array with the same distribution as X.

Let \mathcal{W} be the space of symmetric measurable functions from $[0, 1]^2$ to $[0, 1]$. **Such functions Θ are called “graphons”**.
Let G be a graph on $[n] := \{1, \ldots, n\}$.

$$
\mathbb{P}\{X^n = G \mid U_1, \ldots, U_n\} = \prod_{i,j} \Theta(U_i, U_j)^{G_{i,j}} (1 - \Theta(U_i, U_j))^{1-G_{i,j}} \text{ a.s.} \quad (54)
$$

Taking expectations,

$$
\mathbb{P}\{X^n = G\} = \int_{[0,1]^n} \prod_{i,j} \Theta(u_i, u_j)^{G_{i,j}} (1 - \Theta(u_i, u_j))^{1-G_{i,j}} \, du_1 \cdots du_n \quad (55)
$$
Theorem (Aldous, Hoover)

Let $X = (X_{i,j})_{i,j \in \mathbb{N}}$ be the adjacency matrix of an undirected graph on \mathbb{N}. The following are equivalent:

1. X is jointly exchangeable.
2. X is conditionally Θ-random, given a random graphon Θ.
Example 1 - empty graph
Let $\Theta(u, v) = 0$.

Example 2 - complete graph
Let $\Theta(u, v) = 1$.

Example 3 - Erdos-Renyi graph
For $p \in [0, 1]$, let $\Theta(u, v) = p$.
Example

Let Y_1, Y_2, \ldots be a Pólya urn. Let $\phi : \mathbb{N}^2 \to \mathbb{N}$ be a bijection. Let

$$X_{i,j} := Y_{\phi(i,j)} \text{ for } i < j \in \mathbb{N}.$$ \hspace{1cm} (56)

What’s Θ?

Let $p \sim \text{Uniform}$. Let $\Theta(u, v) = p$.
Example
Let $X_{1,2} \sim \text{Bernoulli}(1/2)$.
Otherwise, let

$$X_{i,j} := X_{1,2} \quad \text{for } i < j \in \mathbb{N}. \quad (57)$$

What’s Θ?

Let $p \sim \text{Bernoulli}(1/2)$. Let $\Theta(u,v) = p$.
Example

Let \(N = (N_1, N_2, \ldots) \) be an i.i.d. sequence Gaussian vectors in \(\mathbb{R}^D \).
Let \(\langle \cdot, \cdot \rangle \) be the dot product.
Let \(\text{sigmoid} : \mathbb{R} \to [0, 1] \) be a squashing function.

\[
X_{i,j} \mid N \overset{i.i.d.}{\sim} \text{Bernoulli} (\text{sigmoid}(\langle N_i, N_j \rangle)) \quad \text{for } i < j \in \mathbb{N}. \tag{58}
\]

What’s \(\Theta \)?

Let \(g : [0, 1] \to \mathbb{R}^d \) be such that \(g(U) \sim \mathcal{N}_D(0, I_D) \) when \(U \sim \text{Uniform} \).

Let \(\Theta(u, v) = \text{sigmoid}(\langle g(u), g(v) \rangle) \).
Implicitly, we’ve been dealing with graphons “defined” on the probability space \(([0, 1], \mathcal{B}_{[0,1]}, \text{Uniform})\).

Consider instead a graphon \(\Theta' \) defined on \((\mathbb{R}^D, \mathcal{B}_{\mathbb{R}^D}, \mathcal{N}_D(0, I_D))\) given by
\[
\Theta'(n, m) = \text{sigmoid}(\langle n, m \rangle).
\]
Example

Consider the graph built one vertex at a time, adding a vertex to a clique with probability proportional to the size of the clique, and creating a new (singleton) clique with probability proportional to a constant $\alpha > 0$.

![Graph example](image)

What’s Θ?

Let $p_1 \geq p_2 \geq \cdots$ be a draw from Poisson-Dirichlet distribution (limiting table size proportions in CRP), considered as a random distribution on \mathbb{N}. Let $(\mathbb{N}, \mathcal{B}_{\mathbb{N}}, p)$ be the random probability space.

Consider a graphon Θ' on this random probability space, given by

$$\Theta'(n, m) = 1 \text{ if } n = m, = 0 \text{ otherwise.}$$

On $([0, 1], \mathcal{B}_{[0,1]}, \text{Uniform})$?

$$\Theta(u, v) = \Theta'(g(u), g(v)) \text{ where } g(u) = \sup\{n \in \mathbb{N} : u \leq p_n\}.$$
Example

\[X_{i,j} := (j - i) \mod 2, \quad \text{for } i < j \in \mathbb{N}. \]

What’s \(\Theta \)?

\(X \) is not exchangeable, so there is no such \(\Theta \)!
Theorem (Aldous, Hoover)

Let $X = (X_{i,j})_{i,j \in \mathbb{N}}$ be the adjacency matrix of an undirected graph on \mathbb{N}. The following are equivalent:

1. X is jointly exchangeable.
2. X is conditionally Θ-random, given a random graphon Θ.

Exchangeable:

$$ (X_{i,j})_{i,j \in \mathbb{N}} \overset{d}{=} (X_{\pi(i),\pi(j)})_{i,j \in \mathbb{N}}, \quad \text{for } \pi \in S_\infty $$

(60)

Conditionally Θ-random: \exists random graphon Θ s.t., for all finite graphs G on $[n]$,

$$ \mathbb{P}[X^n = G \mid \Theta] = \int_{[0,1]^n} \prod_{i,j} \Theta(u_i, u_j)^{G_{i,j}} (1 - \Theta(u_i, u_j))^{1 - G_{i,j}} \, du_1 \cdots du_n \text{ a.s.} $$

(61)

Taking expectations, \exists distribution μ on graphons s.t. for all finite graphs G on $[n]$,

$$ \mathbb{P}\{X^n = G\} = \int \int_{[0,1]^n} \prod_{(i,j) \in G} \theta(u_i, u_j) \prod_{(i,j) \not\in G} (1 - \theta(u_i, u_j)) \, du_1 \cdots du_n \mu(d\theta) $$
Exchangeable sequences
Recall that if \(Y = (Y_1, Y_2, \ldots) \) is an exchangeable sequence then \(\hat{P}_n \to \nu \) a.s.

\[
\mu \Rightarrow \Rightarrow \Rightarrow \Rightarrow \rightarrow \\
\]

Exchangeable graphs
Let \(X = (X_{i,j})_{i,j \in \mathbb{N}} \) is an exchangeable graph.

\[
\mu \Rightarrow \Rightarrow \Rightarrow \Rightarrow \rightarrow \\
\]

You can recover the graphon \(\Theta \) underlying a graph by sampling larger and larger graphs. *Suitably permuted*, they converge in \(L^1 \) with probability one.
Exchangeable sequences and the uniqueness of $\mu = \mathbb{P}[\nu]$

If X_1, X_2, \ldots is an exchangeable sequence, there is a UNIQUE μ s.t.

$$\mathbb{P}\{X_1 \in A_1, \ldots, X_n \in A_n\} = \int \prod_{i=1}^{n} v(A_i) \mu(\text{d}v) \tag{62}$$

Exchangeable graphs and the uniqueness of $\mu = \mathbb{P}[\Theta]$

Let X be a Θ-random graph.

Let $T : [0, 1] \to [0, 1]$ be a measure preserving transformation, and define

$$\Theta^T(x, y) := \Theta(T(x), T(y)). \tag{63}$$

X is Θ^T-random too! Θ^T and Θ induce the same distribution on graphs.

Theorem (Hoover)

The graphon Θ underlying a Θ-random graph is unique up to a measure preserving transformation.
We have now...

1. Reviewed exchangeability for graphs
 (i.e., symmetric \(\{0, 1\} \)-valued arrays representing adjacency).

2. Presented Aldous-Hoover representation theorem in this special case.
 Graph is exchangeable if and only if conditionally \(\Theta \)-random

3. Discussed how to interpret Aldous-Hoover theorem.
 Meaning of \(\Theta \)-random. \(\Theta \) as the limiting empirical graphon. \(\Theta \)-nonuniqueness.

4. Shown that probabilistic symmetries lead to statistical models.

Tutorial Outline

1. Exchangeable sequences.
2. Exchangeable graphs and arrays.
Let $X = (X_{i,j})_{i,j \in \mathbb{N}}$ be an infinite array of random variables. No longer assuming $\{0, 1\}$-values or symmetry of X. E.g., adjacency matrix for a directed graph, or matrix of user-movie ratings.

Definition (jointly exchangeable array)

We say that X is **jointly exchangeable** when

$$X \overset{d}{=} (X_{\pi(i), \pi(j)})_{i,j \in \mathbb{N}}$$ \hspace{1cm} (64)

for every permutation $\pi : \mathbb{N} \rightarrow \mathbb{N}$.

E.g., undirected graph, directed graph. Rows and columns are indexing “same set”.

Definition (separately exchangeable array)

We say that X is **separately exchangeable** (aka row-column exchangeable) when

$$X \overset{d}{=} (X_{\pi(i), \pi'(j)})_{i,j \in \mathbb{N}}$$ \hspace{1cm} (65)

for every pair of permutations $\pi, \pi' : \mathbb{N} \rightarrow \mathbb{N}$.

E.g., user-movie ratings. Rows and columns indexing different sets.
Example
Elements $X_{i,j}$ i.i.d.
Separately exchangeable? Jointly exchangeable?

Example
$X_{i,j} = 1$ if $i = j$ and $X_{i,j} = 0$ otherwise.
Separately exchangeable? Jointly exchangeable?

Example
Let $U_{i,j}$ be i.i.d. Uniform random variables.
Let $X_{i,j} = f(U_{00}, U_{i,0}, U_{0,j}, U_{i,j})$ for a suitable function f.
Separately exchangeable? Jointly exchangeable?

Example
Let U_i be i.i.d. Uniform random variables.
Let $X_{i,j} = g(U_i, U_j)$ for a suitable function g.
Separately exchangeable? Jointly exchangeable?
EXCHANGEABLE ARRAYS

Definition (Aldous-Hoover, separately exchangeable)

Let $U_{i,j}$ be i.i.d. Uniform random variables. An infinite array X is separately exchangeable if and only if

$$X \overset{d}{=} (f(U_{00}, U_{i,0}, U_{0,j}, U_{i,j}))_{i,j \in \mathbb{N}}$$

(66)

for some measurable function f.

Definition (Aldous-Hoover, jointly exchangeable)

Let $U_{\{i,j\}}$ be i.i.d. Uniform random variables. That is $U_{\{i,j\}} = U_{\{j,i\}}$.

An infinite array X is separately exchangeable if and only if

$$X \overset{d}{=} (f(U_{\{0,0\}}, U_{\{i,0\}}, U_{\{0,j\}}, U_{\{i,j\}}))_{i,j \in \mathbb{N}}$$

(67)

for some measurable function f.
Exchangeable Arrays

Example

Elements $X_{i,j}$ i.i.d.
Separately exchangeable: $f(a, b, c, d) = g(d)$.

Example

$X_{i,j} = 1$ if $i = j$ and $X_{i,j} = 0$ otherwise.
Jointly exchangeable: $f(a, b, c, d) = 1(b == c)$.

Example

Let X be Θ-random.
Jointly exchangeable: $f(a, b, c, d) = 1(d < \Theta(b, c))$.
Let Y_1, Y_2, \ldots be an exchangeable sequence. Define $X_{i,j} = Y_j$.

What does Aldous-Hoover tell us about Y?

Definition (de Finetti in Aldous-Hoover form)

Let U_i be i.i.d. Uniform random variables.

An infinite sequence Y_1, Y_2, \ldots is exchangeable if and only if

\begin{equation}
(Y_i)_{i \in \mathbb{N}} \overset{d}{=} (f(U_0, U_i))_{i \in \mathbb{N}} \tag{68}
\end{equation}

for some measurable function f.
Exchangeability and Statistics: Not Just Bayesian!

Exchangeable observation, version 1
Let \((f(U_{0,0}, U_{i,0}, U_{0,j}, U_{i,j}))_{i,j \in \mathbb{N}}\) be a (partially-observed) exchangeable array, where \(f\) is unknown and \((U_{i,j})_{i,j \in \mathbb{N}}\) i.i.d. Uniform.

Define \(F(b, c, d) = f(U_{0,0}, b, c, d)\). \(F\) is a random measurable function.

Exchangeable observation, version 2
Let \((F(U_{i,0}, U_{0,j}, U_{i,j}))_{i,j \in \mathbb{N}}\) and \(F \sim \mu\), where \(\mu\) is unknown and \((U_{i,j})_{i,j \in \mathbb{N}}\) i.i.d. Uniform.

Problem 1: Even observing entire array \(X\) reflects only one realization \(F\) from \(\mu\).
Solution: Dissociated arrays (\(F\) non-random). These are the ergodic measures.
Problem 2: Random functions of the form \(F(b, c, d) = G(b, c)\) are “dense”.
Solution: Move to simple arrays, i.e., last parameter is not used.

Simple dissociated array observation
Let \(U_i, V_j\) be i.i.d. Uniform random variables.
Let \((F(U_i, V_j))_{i,j \in \mathbb{N}}\) be a simple dissociated array, unknown \(F\).

Bayesian approach
Let \(F\) be a random measurable function with some prior.
Then \(X_1, X_2, \ldots\) is an exchangeable array.
In joint work with Orbanz [OR13], we show that many nonparametric models of graphs/networks can be recast as prior distributions on random functions \(F \).

1. Infinite Relational Model (IRM) of Kemp et al. (2008) based on Chinese restaurant process (Dirichlet process).
2. IRM where the interaction probabilities are also an exchangeable array. [OR]
3. Infinite Feature Relational Model (IFRM) of Miller et al. (2010) based on Indian buffet process (Beta process).
5. Gaussian-process-based relational model. Lloyd et al. NIPS 2012 show how many factorization models fit into this framework.
We have...

1. Reviewed exchangeability for sequences, graphs, and arrays
2. Presented de Finetti and Aldous-Hoover representation theorems.
 \(X \) exchangeable if and only if \(X \overset{d}{=} (F(...)) \) for a random \(F \).
3. Discussed how to interpret de Finetti and Aldous-Hoover.
 \(\nu / \Theta / F \) is the limiting empirical distribution/graphon/array. \(\nu \) unique. \(\Theta \) and \(F \) only unique up to a m.p.t.
4. Shown how probabilistic symmetries lead to statistical models.

More reading

 Preprint available at http://danroy.org