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Statistical Machine Learning
Given some data X1, X2, . . .
identify hidden structure/patterns
in order to predict future or missing data.
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1. (height, weight, age) of students

X =

171cm 65kg 21
182cm 70kg 19
170cm ? 20

: : :

2. daily average (temperature, humidity, rainfall) in Guanajuato

X =

21◦C 40% 0cm
27◦C 50% 0cm
30◦C 60% ?

: :

3. X = scores/ratings for movies by users

X =

5 5 5 3 2 . .
2 1 2 5 5 . .
5 ? 5 2 3 . .
: : : : :

Is there structure in the data?
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What structure is in the data?

1.

{ �, �, �, �, �, · · · }

2.

�→ �→ �→ �→ � · · ·

3.

users



movies︷ ︸︸ ︷
� � � � � · · ·

� � · · ·

�
...

. . .
...
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Is there even more structure in the data?

1. P

( 171cm 65kg 21
182cm 70kg 19
170cm ? 20

)
?
= P

( 182cm 70kg 19
171cm 65kg 21
170cm ? 20

)
(Swapped top and middle row.)

2. P

( 21◦C 40% 0cm
27◦C 50% 0cm
30◦C 60% ?

)
?
= P

( 27◦C 50% 0cm
21◦C 40% 0cm
30◦C 60% ?

)
(Swapped top and middle row.)

3. P

( 5 5 5 3 2
2 1 2 5 5
5 4 5 2 3

)
?
= P

( 2 1 2 5 5
5 5 5 3 2
5 4 5 2 3

)
(Swapped top and middle row.)

?
= P

( 1 2 2 5 5
5 5 5 3 2
4 5 5 2 3

)
(Swapped first and second columns.)

?
= P

( 5 5 2 2 1
5 5 5 3 2
5 5 4 3 2

)
(Sorted each row.)
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Probabilistic symmetries

1. Exchangeable sequence

P[(X1, X2, . . . , Xn)] = P[(X4, Xn, . . . , X1)] = P[(Xπ(1), . . . , Xπ(n))]

Invariance to permutation.

2. Stationary sequence

P[(X1, X2, . . . )] = P[(X4, X5, . . . )] = P[(Xk+1, Xk+2, . . . )]

Invariance to shift.

3. Exchangeable array

P



X1,1 X1,2 · · ·
X2,1 X2,2 · · ·
X3,1 X3,2 · · ·

...
...

. . .


 = P



Xπ(1),τ(1) Xπ(1),τ(2) · · ·
Xπ(2),τ(1) Xπ(2),τ(2) · · ·
Xπ(3),τ(1) Xπ(3),τ(2) · · ·

...
...

. . .




Invariance to separate permutation of rows and columns.

What is the most general way to model data assuming these
symmetries?
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Goals of this tutorial

1. Give a review of exchangeability in several forms.

2. Link each type of exchangeability to a representation theorem.

3. Explain how to interpret these representation theorems in their various forms.

4. Convey that probabilistic symmetries are an important consideration when
constructing a statistical model.

Tutorial Outline

1. Exchangeable sequences.

2. Exchangeable graphs and arrays.
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CAVEATS

A rigorous account requires measure theory.

1. All spaces are complete, separable metric spaces, equipped with their Borel
σ-algebras.

2. All functions and sets are measurable.

3. Some necessary details will appear in a light gray color like this. Ignore these for
now, and go back and study them later to understand the material at a greater
depth.

4. I will define the “naturals” to be N := {1, 2, . . . }.
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EXCHANGEABLE SEQUENCES

Definition (exchangeable sequences)
Let X1, X2, . . . be a sequence of random variables taking values in a space S. We
say the sequence is exchangeable when, for every permutation π of N,

(X1, X2, . . . )
d
= (Xπ(1), Xπ(2), . . . ) (1)

What does Eq. (1) mean?

⇐⇒ for all n ∈ N,
(X1, . . . , Xn)

d
= (Xπ(1), . . . , Xπ(n)). (2)

⇐⇒ for all n ∈ N, and distinct k1, . . . , kn ∈ N,
(X1, . . . , Xn)

d
= (Xk1 , . . . , Xkn). (3)

⇐⇒ for all n ∈ N, and permutations π of [n] := {1, 2, . . . , n},
(X1, . . . , Xn)

d
= (Xπ(1), . . . , Xπ(n)). (4)
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EXCHANGEABLE SEQUENCES

Definition (exchangeable sequences)
Let X1, X2, . . . be a sequence of random variables taking values in a space S. We
say the sequence is exchangeable when, for every n ∈ N and permutation π of [n],

(X1, . . . , Xn)
d
= (Xπ(1), . . . , Xπ(n)) (1)

What does Eq. (1) mean?

⇐⇒ for all subsets A1, . . . , An ⊆ S,
P{X1 ∈ A1, . . . , Xn ∈ An} = P{Xπ(1) ∈ A1, . . . , Xπ(n) ∈ An}. (2)

⇐⇒ for all subsets A1, . . . , An ⊆ S,
P{X1 ∈ A1, . . . , Xn ∈ An} = P{X1 ∈ Aπ(1), . . . , Xn ∈ Aπ(n)}. (3)

Invariance of the distribution.
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EXAMPLES OF EXCHANGEABLE SEQUENCES

i.i.d. sequences are exchangeable
Recall that a sequence X1, X2, . . . of random variables is independent when

P{X1 ∈ A1, . . . , Xn ∈ An} =

n∏
i=1

P{Xi ∈ Ai}, (4)

for all n ∈ N and subsets A1, . . . , An ⊆ S,
and is independent and identically distributed (i.i.d.) when

P{X1 ∈ A1, . . . , Xn ∈ An} =
n∏
i=1

P{X1 ∈ Ai} =

n∏
i=1

µ(Ai), (5)

where µ = P{X1 ∈ · } is the marginal distribution of every element.
We will say that X1, X2, . . . is i.i.d.-µ.

For every permutation π of [n] = {1, 2, . . . , n}.
n∏
i=1

µ(Aπ(i)) =

n∏
i=1

µ(Ai) (6)
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EXAMPLES OF EXCHANGEABLE SEQUENCES

conditionally i.i.d. sequences are exchangeable
Recall that a sequence X1, X2, . . . of random variables is conditionally
independent when there is a random variable θ such that a.s.

P[X1 ∈ A1, . . . , Xn ∈ An | θ] =

n∏
i=1

P[Xi ∈ Ai | θ], (7)

for all n ∈ N and A1, . . . , An ⊆ S, and is conditionally i.i.d. given θ when a.s.

P[X1 ∈ A1, . . . , Xn ∈ An | θ] =
n∏
i=1

P[X1 ∈ Ai | θ] =
n∏
i=1

ν(Ai), (8)

where ν := P[X1 ∈ · | θ] is the (random) marginal distribution, conditioned on θ.
Note that the sequence is also conditionally i.i.d.-ν given ν.

Let X1, X2, . . . be conditionally i.i.d.-ν given ν. Let n ∈ N, π a permutation of [n].

P{Xπ(1) ∈ A1, . . . , Xπ(1) ∈ An} (9)

= E
(
P[Xπ(1) ∈ A1, . . . , Xπ(1) ∈ An | ν]

)
= E

( n∏
i=1

ν(Ai)
)

(10)
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EXAMPLES OF EXCHANGEABLE SEQUENCES

Pólya’s urn
Let S = {0, 1}.
Let P{X1 = 1} = P{X1 = 0} = 1/2. In other words,

X1 ∼ Bernoulli(1/2) (11)

Let Sn = X1 + · · ·+Xn.

P[Xn+1 = 1 |X1, . . . , Xn] =
Sn + 1

n+ 2
. (12)

In other words,

Xn+1 |X1, . . . , Xn ∼ Bernoulli(Sn+1
n+2

) (13)

1 0 1 1 0 ? P{1 next | seen 10110} = 3+1
5+2

.
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EXAMPLES OF EXCHANGEABLE SEQUENCES

Pólya’s urn

X1 ∼ Bernoulli(1/2) (14)

Xn+1 |X1, . . . , Xn ∼ Bernoulli(Sn+1
n+2

), for n ∈ N. (15)

Note that each element Xn+1 depends on all previous elements. No independence!

Let x1, . . . , xn ∈ {0, 1} and define sj = x1 + · · ·+ xj .

P{X1 = x1, X2 = x2, . . . , Xn = xn} (16)

= P{X1 = x1} · P{X2 = x2 |X1 = x1} · · ·P{Xn = xn |X1 = x1, . . . , Xn−1 = xn−1}
(17)

=

(
1

2

)
︸ ︷︷ ︸

P{X1=x1}

·
(
s1 + 1

3

)x2(2− s1
3

)1−x2

︸ ︷︷ ︸
P{X2=x2 |X1=x1}

· · ·
(
sn−1 + 1

n+ 1

)xn(n− 1− sn−1

n+ 1

)1−xn

︸ ︷︷ ︸
P{Xn=xn |X1=x1,...,Xn−1=xn−1}

(18)

=
(sn)!(n− sn)!

(n+ 1)!
this is invariant to permutation, hence exchangeable! (19)
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EXCHANGEABLE SEQUENCES

Theorem (de Finetti; Hewitt-Savage)
Let X = (X1, X2, . . . ) be an infinite sequence of random variables in a space S.
The following are equivalent:

1. X is exchangeable.

2. X is conditionally i.i.d.

Exchangeable:
(X1, X2, . . . )

d
= (Xπ(1), Xπ(2), . . . ), for π ∈ S∞ (20)

Conditionally i.i.d.: ∃ random variable θ s.t., for all n and Ai,
P[X1 ∈ A1, . . . , Xn ∈ An | θ] =

∏n
i=1 P[X1 ∈ Ai | θ] a.s. (21)

Equivalently, ∃ random probability measure ν s.t., for all n and Ai,
P[X1 ∈ A1, . . . , Xn ∈ An | ν] =

∏n
i=1 ν(Ai) a.s. (22)

Taking expectations, P{X1 ∈ A1, . . . , Xn ∈ An} = E
(∏n

i=1 ν(Ai)
)

. (23)

Mixed i.i.d.: ∃ distribution µ (the de Finetti mixing measure) s.t., for all n and Ai,

P{X1 ∈ A1, . . . , Xn ∈ An} =

∫ n∏
i=1

v(Ai)µ(dv) (24)
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PÓLYA’S URN

X1 ∼ Bernoulli(1/2) (25)

Xn+1 |X1, . . . , Xn ∼ Bernoulli(Sn+1
n+2

), for n ∈ N. (26)

Exchangeable:
P{X1 = x1, . . . , Xn = xn} = (sn)!(n−sn)!

(n+1)!
(27)

Conditionally i.i.d.: There is a random variable θ s.t. a.s.

P[X1 = x1, . . . , Xn = xn | θ] =
n∏
i=1

P[X1 = xi | θ] (28)

= P[X1 = 1 | θ]snP[X1 = 0 | θ]n−sn (29)

= νsn1 (1− ν1)n−sn (30)

where ν1 = P[X1 = 1 | θ]. Note that (Xn)n∈N is conditionally i.i.d. given ν1.
Are θ and ν1 different? How are they related?

Mixed i.i.d.: Let µ be the distribution of ν1. Taking expectations,

P{X1 = x1, . . . , Xn = xn} =

∫ 1

0

ϑsn(1− ϑ)n−sn µ(dϑ) (31)

Equating expressions for P{X1 = x1, . . . , Xn = xn} implies µ = Uniform[0,1]!
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DE FINETTI’S THEOREM IN THE CASE OF PÓLYA’S URN

Pólya’s urn:

X1 ∼ Bernoulli(1/2) (32)

Xn+1 |X1, . . . , Xn ∼ Bernoulli(Sn+1
n+2

), for n ∈ N. (33)

Beta-Bernoulli process:

ν1 ∼ µ (34)

Xn | ν1 iid∼ Bernoulli(ν1), for n ∈ N. (35)

How are X = (Xn)n∈N, P[X] and ν1, µ = P[ν1] related?
In what sense are ν1 and µ uniquely determined by X and P[X]?
• By the law of large numbers, and the disintegration theorem,

1

n

n∑
j=1

Xj −→ ν1 as n→∞ a.s. (36)

• If θ renders X conditionally i.i.d., then ν1 = g(θ) a.s. for some function g.
• If µ′ is a measure such that

P{X1 = x1, . . . , Xn = xn} =

∫
vsn(1− v)n−sn µ′(dv) (37)

then µ′ = P[ν1].Daniel M. Roy 17 / 54



DE FINETTI’S THEOREM IN GENERAL

Let X = (Xn)n∈N be an exchangeable sequence in a space S.
Let P̂n = 1

n
(δX1 + · · ·+ δXn) be the empirical measure.

Define a random measure ν on S by

ν(A) = lim
n→∞

P̂n(A) a.s. A ⊆ S. (38)

Informally, ν = limn→∞ P̂n. Let µ = P[ν].
Then X is conditionally i.i.d.-ν given ν. That is

Xn | ν iid∼ ν (39)

Uniqueness?
• If θ renders X conditionally i.i.d., then ν = g(θ) a.s. for some function g.
• If µ′ is a measure such that

P{X1 ∈ A1, . . . , Xn ∈ An} =

∫ n∏
i=1

v(Ai)µ
′(dv) (40)

then µ′ = P[ν].
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EXCHANGEABILITY AND STATISTICS

Definition (Statistical inference base/model)

1. Sample space X .

2. Parametric family P0 := {Pθ}θ∈T of probability distributions on X
indexed by elements of T called parameters. T is called the parameter space.

3. Observed data x∗ ∈ X .

4. Loss function L : T × T → R.

The risk of an estimator δ : S → T for t ∈ T , is

R(δ, θ) = EX∼Pθ{L(θ, δ(X))} :=

∫
X
L(θ, δ(x))Pθ(dx) (41)

Definition (Bayesian estimator)
Let θ be a random variable in T , with prior distribution π, and let X | θ ∼ Pθ .
The Bayesian estimator minimizes the posterior expected loss:

δπ(x) := arg min
θ∗∈T

Eθ ∼ P[θ|X=x]{L(θ, θ∗)} (42)
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EXCHANGEABILITY AND STATISTICS: NOT JUST BAYESIAN!

Classic i.i.d. framework
Let X1, . . . , Xn

iid∼ Q, for an unknown distribution Q ∈ Q0 := {Qθ}θ∈T .

Say observations are R-valued. We can formalize this as follows:

1. Sample space X = Rn

2. Parametric family P := {Qnθ : θ ∈ T}, where Qn is the n-fold product.

Let (X1, . . . , Xn) ∼ Qnθ , for an unknown Qnθ ∈ P .

Exchangeable observation
Let (X1, . . . , Xn) ∼ P be conditionally i.i.d., for an unknown distribution P .

Conditionally i.i.d. observation
Let (X1, . . . , Xn) | ν ∼ νn and ν ∼ µ, for an unknown distribution µ.

Even as n→∞, data reflects only one realization ν from µ. The problem of
estimating µ is “ill-posed” to the frequentist. The Bayesian gets 1 data point.

Bayesian approach in the i.i.d. framework
Let θ be a random variable with some prior. Then Qθ is a random measure, and
X1, X2, . . . is an exchangeable sequence.
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“DE FINETTI’S THEOREM JUSTIFIES ...” NOT THE POINT.

de Finetti’s philosophy

1. de Finetti rejected the idea of a parameter and argued there was no need to
assume their existence.

2. He thought that probabilities should be specified only on observable quantities.

3. de Finetti’s theorem shows that conserved quantities (like the limiting frequency
of 1’s) arise from symmetries and are random variables.

4. One can then interpret this in the classic sense (specifying a parameter and
placing a prior on it), but there’s no need to do that. The underlying random
measure ν is there whether you like it or not.

Subjectivism

1. Distribution represents subjective (personal) uncertainty.

2. Exchangeability ⇐⇒ certainty that order of the data is irrelevant.

3. subjective distribution on data alone + exchangeability =⇒ conditionally i.i.d.
distribution on ν is subjective as well.

4. Note: de Finetti’s holds only for infinite sequences, but subjectivist need only be
unwilling to posit an upper bound on the data size and projectivity.

Daniel M. Roy 21 / 54



CONNECTION WITH NONPARAMETRIC INFERENCE

What does exchangeability have to do with nonparametric Bayesian statistics?

Bayesian

1. Model: X1, X2, . . .
iid∼ Q for unknown Q ∈ Q0. Need prior onQ0.

2. IfQ0 = {Gaussian distributions on R} thenQ0
∼= R2.

Finite-dimensional space, hence parametric.

3. IfQ0 = {All Borel probability measures on R} thenQ0
∼= RN.

Infinite-dimensional space, hence nonparametric.

4. Hard. But if you have a specific question to ask (e.g., what is Q(A) for some set
A?) then it’s possible.

5. Dirichlet process, Polya trees, Normalized Completely Random Measures, etc.

Subjectivist

1. Need a model for our data X1, X2, . . . .

2. If we believe order is irrelevant, by exchangeability, it suffices to specify a prior
measure µ on space of probability measures.

3. No further assumptions: support of µ must be all distributions.

Hence µ will be a nonparametric prior.Daniel M. Roy 22 / 54



So far we have...

1. Reviewed exchangeability for sequences.

2. Presented de Finetti’s representation theorem.

Exchangeable if and only if conditionally i.i.d.

3. Discussed how to interpret de Finetti’s theorems in its various forms.

4. Shown that probabilistic symmetries lead to statistical models.

Exchangeability leads to a Bayesian approach to the classic i.i.d. framework.

Tutorial Outline

1. Exchangeable sequences.

2. Exchangeable graphs and arrays.
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EXCHANGEABLE GRAPHS

Let X = (Xi,j)i,j∈N be the adjacency matrix of an undirected graph on N.EXCHANGEABILITY FOR CORRESPONDING ARRAYS

1
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⌘

⌘

James Lloyd 9 / 45

Definition (jointly exchangeable array)
Call X (jointly) exchangeable when, for every permutation π of N,

(Xi,j)i,j∈N
d
= (Xπ(i),π(j))i,j∈N. (43)

Most figures by James Lloyd (Cambridge) and Peter Orbanz (Columbia)
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Definition (jointly exchangeable array)
Call X (jointly) exchangeable when, for every permutation π of N,

(Xi,j)i,j∈N
d
= (Xπ(i),π(j))i,j∈N. (44)

equivalently
X1,1 X1,2 · · ·
X2,1 X2,2 · · ·
X3,1 X3,2 · · ·

...
...

. . .

 d
=


Xπ(1),π(1) Xπ(1),π(2) · · ·
Xπ(2),π(1) Xπ(2),π(2) · · ·
Xπ(3),π(1) Xπ(3),π(2) · · ·

...
...

. . .

 (45)

In the case Xi,j ∈ {0, 1}, let Xn = (Xi,j)i,j≤n.Then X is an exchangeable graph
if for all n ∈ N and isomorphic graphs G,G′ on [n], P{Xn = G} = P{Xn = G′}.

P

{
X10 =

1
2

3

4

5
6

7

8

9

10 }
= P

{
X10 =

2
7

6

5

3
1

10

8

4

9 }
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I Links between websites

I Proteins that interact

I Products that customers have purchased

I Relational databasesMULTIPLE RELATIONS AND COVARIATES / SEQUENCES

Student Course

Observed Takes

Friends GradeAge

X X X X X
X
X
X
X
X

⇥
⇥

X

X

A

A

B

B

C

C

D

D

E

F

15

15

15

14

14

16
James Lloyd 4 / 45
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EXAMPLES OF EXCHANGEABLE GRAPHS

Are the following graphs exchangeable?

Example

Xi,j := 0 for i < j ∈ N. (46)

Yes.

Example

Xi,j := 1 for i < j ∈ N. (47)

Yes.
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EXAMPLES OF EXCHANGEABLE GRAPHS

Is the following graph exchangeable?

Example

Xi,j := (j − i) mod 2, for i < j ∈ N. (48)

P

{
X3 = 1 2 3

}
?
= P

{
X3 = 1 3 2

}

No.
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EXAMPLES OF EXCHANGEABLE GRAPHS

Is the following graph exchangeable?

Example
Consider the graph with vertex set N such that for every pair of vertices i, j ∈ N, we
include the edge {i, j} independently with probability p ∈ [0, 1].

The adjacency matrix X is such that

Xi,j
iid∼ Bernoulli(p) for i < j ∈ N. (49)

Let G be a graph on [n]. Then P{Xn = G} = 2−(n2)2 .

Yes.

The resulting graph is a so-called “Erdös-Rényi graph”.
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EXAMPLES OF EXCHANGEABLE GRAPHS

Is the following graph exchangeable?

Example
Let X1,2 ∼ Bernoulli(1/2).
Otherwise, let

Xi,j := X1,2 for i < j ∈ N. (50)

Yes.
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EXAMPLES OF EXCHANGEABLE GRAPHS

Is the following graph exchangeable?

Example
Let Y1, Y2, . . . be a Pólya urn. Let φ : N2 → N be a bijection.
Let

Xi,j := Yφ(i,j) for i < j ∈ N. (51)

Yes.

Daniel M. Roy 31 / 54



EXAMPLES OF EXCHANGEABLE GRAPHS

Is the following graph exchangeable?

Example
Consider the graph built one vertex at a time, adding a vertex to a clique with
probability proportional to the size of the clique, and creating a new (singleton) clique
with probability proportional to a constant α > 0.

3 6 2 1 3 α

Yes.

The process is just an graph version of the Chinese restaurant process and is very
closely related to the Infinite Relational Model of Kemp et al. (2008).

Daniel M. Roy 32 / 54



EXAMPLES OF EXCHANGEABLE GRAPHS

Is the following graph exchangeable?

Example
Let N = (N1, N2, . . . ) be an i.i.d. sequence Gaussian vectors in RD .
Let 〈·, ·〉 be the dot product.
Let sigmoid : R→ [0, 1] be a squashing function.

Xi,j |N ind∼ Bernoulli(sigmoid(〈Ni, Nj〉)) for i < j ∈ N. (52)

Yes.

This model is related to matrix factorization techniques, as well as the eigenmodel
(Hoff 2008).
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Let U1, U2, . . . be i.i.d. uniform random variables in [0, 1].

Definition (Θ-random graph)
Let Θ : [0, 1]2 → [0, 1] be a symmetric measurable function, and let

Xi,j := 1 with probability Θ(Ui, Uj) (53)

independently for every i < j ∈ N. By a Θ-random graph we mean an array with the
same distribution as X .

RECAP: EXCHANGEABLE ARRAY REPRESENTATION

Representation results inspire a generic modelling recipe

e.g., Binary networks
⇥ - Adjacency matrix approximated by function on unit square
Ui - Each node associated with a latent variable in [0, 1]

Wij := ⇥(Ui, Uj) - Evaluation of approximate adjacency matrix
Xij ⇠ Bernoulli(Wij) - Bernoulli likelihood (can be shown to be general)

⇥ can be pictured as a blurred adjacency matrix

0
0

1
1

U1

U1

U2

U2

0

1

Pr{X12 = 1}
⇥

James Lloyd 14 / 45

EXCHANGEABILITY FOR CORRESPONDING ARRAYS
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James Lloyd 9 / 45

LetW be the space of symmetric measurable functions from [0, 1]2 to [0, 1].
Such functions Θ are called “graphons”.
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RECAP: EXCHANGEABLE ARRAY REPRESENTATION

Representation results inspire a generic modelling recipe

e.g., Binary networks
⇥ - Adjacency matrix approximated by function on unit square
Ui - Each node associated with a latent variable in [0, 1]

Wij := ⇥(Ui, Uj) - Evaluation of approximate adjacency matrix
Xij ⇠ Bernoulli(Wij) - Bernoulli likelihood (can be shown to be general)

⇥ can be pictured as a blurred adjacency matrix

0
0

1
1

U1

U1

U2

U2

0

1

Pr{X12 = 1}
⇥

James Lloyd 14 / 45Let G be a graph on [n] := {1, . . . , n}.

P{Xn = G |U1, . . . , Un] =
∏
i,j

Θ(Ui, Uj)
Gi,j (1−Θ(Ui, Uj))

1−Gi,j a.s. (54)

Taking expectations,

P{Xn = G} =

∫
[0,1]n

∏
i,j

Θ(ui, uj)
Gi,j (1−Θ(ui, uj))

1−Gi,j du1 · · ·dun (55)
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Theorem (Aldous, Hoover)
Let X = (Xi,j)i,j∈N be the adjacency matrix of an undirected graph on N. The
following are equivalent:

1. X is jointly exchangeable.

2. X is conditionally Θ-random, given a random graphon Θ.
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GRAPHONS UNDERLYING EXCHANGEABLE GRAPHS

Example 1 - empty graph
Let Θ(u, v) = 0.

Example 2 - complete graph
Let Θ(u, v) = 1.

Example 3 - Erdos-Renyi graph
For p ∈ [0, 1], let Θ(u, v) = p.
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GRAPHONS UNDERLYING EXCHANGEABLE GRAPHS

Example
Let Y1, Y2, . . . be a Pólya urn. Let φ : N2 → N be a bijection.
Let

Xi,j := Yφ(i,j) for i < j ∈ N. (56)

What’s Θ?

Let p ∼ Uniform. Let Θ(u, v) = p.
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GRAPHONS UNDERLYING EXCHANGEABLE GRAPHS

Example
Let X1,2 ∼ Bernoulli(1/2).
Otherwise, let

Xi,j := X1,2 for i < j ∈ N. (57)

What’s Θ?

Let p ∼ Bernoulli(1/2). Let Θ(u, v) = p.
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GRAPHONS UNDERLYING EXCHANGEABLE GRAPHS

Example
Let N = (N1, N2, . . . ) be an i.i.d. sequence Gaussian vectors in RD .
Let 〈·, ·〉 be the dot product.
Let sigmoid : R→ [0, 1] be a squashing function.

Xi,j |N ind∼ Bernoulli(sigmoid(〈Ni, Nj〉)) for i < j ∈ N. (58)

What’s Θ?

Let g : [0, 1]→ Rd be such that g(U) ∼ ND(0, ID) when U ∼ Uniform.

Let Θ(u, v) = sigmoid(〈g(u), g(v)〉).
Implicitly, we’ve been dealing with graphons “defined” on the probability space
([0, 1],B[0,1],Uniform).

Consider instead a graphon Θ′ defined on (RD,BRD ,ND(0, ID)) given by
Θ′(n,m) = sigmoid(〈n,m〉).
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GRAPHONS UNDERLYING EXCHANGEABLE GRAPHS

Example
Consider the graph built one vertex at a time, adding a vertex to a clique with
probability proportional to the size of the clique, and creating a new (singleton) clique
with probability proportional to a constant α > 0.

3 6 2 1 3 α

What’s Θ?

Let p1 ≥ p2 ≥ · · · be a draw from Poisson-Dirichlet distribution (limiting table size
proportions in CRP), considered as a random distribution on N.
Let (N,BN, p) be the random probability space.
Consider a graphon Θ′ on this random probability space, given by

Θ′(n,m) = 1 if n = m, = 0 otherwise.
On ([0, 1],B[0,1],Uniform)?

Θ(u, v) = Θ′(g(u), g(v)) where g(u) = sup{n ∈ N : u ≤ pn}.
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GRAPHONS UNDERLYING EXCHANGEABLE GRAPHS

Example

Xi,j := (j − i) mod 2, for i < j ∈ N. (59)

What’s Θ?

X is not exchangeable, so there is no such Θ!
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EXCHANGEABLE SEQUENCES

Theorem (Aldous, Hoover)
Let X = (Xi,j)i,j∈N be the adjacency matrix of an undirected graph on N. The
following are equivalent:

1. X is jointly exchangeable.

2. X is conditionally Θ-random, given a random graphon Θ.

Exchangeable:
(Xi,j)i,j∈N

d
= (Xπ(i),π(j))i,j∈N, for π ∈ S∞ (60)

Conditionally Θ-random: ∃ random graphon Θ s.t., for all finite graphs G on [n],

P[Xn = G |Θ] =

∫
[0,1]n

∏
i,j

Θ(ui, uj)
Gi,j (1−Θ(ui, uj))

1−Gi,j du1 · · ·dun a.s.

. (61)

Taking expectations, ∃ distribution µ on graphons s.t. for all finite graphs G on [n],

P{Xn = G} =

∫ ∫
[0,1]n

∏
(i,j)∈G

θ(ui, uj)
∏

(i,j)6∈G
(1−θ(ui, uj)) du1 · · ·dunµ(dθ)
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Θ AS THE LIMITING EMPIRICAL GRAPHON

Exchangeable sequences
Recall that if Y = (Y1, Y2, . . . ) is an exchangeable sequence then P̂n → ν a.s.

µV V −→

Exchangeable graphs
Let X = (Xi,j)i,j∈N is an exchangeable graph.

µV V −→

You can recover the graphon Θ underlying a graph by sampling larger and larger
graphs. Suitably permuted, they converge in L1 with probability one.
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Θ IS NOT UNIQUE (AS A FUNCTION)

Exchangeable sequences and the uniqueness of µ = P[ν]
If X1, X2, . . . is an exchangeable sequence, there is a UNIQUE µ s.t.

P{X1 ∈ A1, . . . , Xn ∈ An} =

∫ n∏
i=1

v(Ai)µ(dv) (62)

Exchangeable graphs and the uniqueness of µ = P[Θ]
Let X be a Θ-random graph.
Let T : [0, 1]→ [0, 1] be a measure preserving transformation, and define

ΘT (x, y) := Θ(T (x), T (y)). (63)
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Bayesian models are usually defined by defining a prior and
a sampling distribution (i.e., likelihood). We hence have to
stress here that, in the representation above, the sampling
distributions p and q are generic—any jointly or separately
exchangeable matrix can be represented with these sampling
distributions, and specifying the model is equivalent to speci-
fying the prior, i.e., the distribution of F .

Remark III.10 (Non-exchangeable arrays). Various types of
array-valued data depend on time or some other covariate. In
this case, joint or separate exchangeability can be assumed
to hold marginally, as described in Section II-C. For time-
dependent graph data, for example, one would assume that
joint exchangeability holds marginally at each point in time.
In this case, the random mapping ⇠ in (II.19) becomes a time-
indexed array. The random function W ( . , . ) in Eq. (III.4)
then turns into a function W ( . , . , t) additionally dependent
on time—which raises new modeling questions, e.g., whether
the stochastic process (W ( . , . , t))t should be smooth. More
generally, the discussion in II-C applies to joint and separate
exchangeability just as it does to exchangeable sequences.

There is a much deeper reason why exchangeability may not
be an appropriate assumption—too oversimplify, because ex-
changaeble models of graphs may generate too many edges—
which is discussed in depth in Section VII. /

D. Uniqueness of representations

In the representation Eq. (III.4), random graph distributions
are parametrized by measurable functions w : [0, 1]2 ! [0, 1].
This representation is not unique, as illustrated in Fig. 5. In
mathematics, the lack of uniqueness causes a range of techni-
cal difficulties. In statistics, it means that w, when regarded
as a model parameter, is not identifiable. It is possible, though
mathematically challenging, to treat the estimation problem up
to equivalence of functions; Kallenberg [35, Theorem 4] has
solved this problem for a large class of exchangeable arrays
(see also [18, §4.4] for recent related work). For now, we will
only explain the problem; a unique parametrizations exists,
but it is based on the notion of a graph limit, and has to be
postponed until Section V.

To see that the representation by w is not unique, note that
the only requirement on the random variables Ui in Theo-
rem III.4 is that they are uniformly distributed. Suppose we

Fig. 5: Non-uniqueness of representations: The function on the left
parametrizes a random graph as in Fig. 4. On the right, this function has been
modified by dividing the unit square into 10 ⇥ 10 blocks and applying the
same permutation of the set {1, . . . , 10} simultaneously to rows and columns.
Since the random variables Ui in Eq. (III.4) are i.i.d., sampling from either
function defines one and the same distribution on random graphs.

1

10

0

w

0

01

1

w0

1
2

w00

Fig. 6: The functions w and w0 are distinct but parametrize the same
random graph (an almost surely bipartite graph). Both remain invariant and
hence distinct under monotonization, which illustrates that monotonization
does not yield a canonical representation (see Remark III.11 for details).
Additionally, function w00 shows that the projections do not distinguish
different random graphs: w00 projects to the same constant functions as w
and w0, but parametrizes a different distribution (an Erdös-Renyi graph with
edge probability 1/2).

define a bijective function � : [0, 1]! [0, 1] with the property
that, if U is a uniform random variable, �(U) is still uniformly
distributed. Such a mapping is called a measure-preseving
transformation (MPT), because it preserves the uniform prob-
ability measure. Intuitively, an MPT generalizes the concept
of permuting the nodes of a graph to the representation of
graphs by functions on a continous set. There is an infinite
number of such mappings. For example, we could define � by
partitioning [0, 1] into any number of blocks, and then permute
these blocks, as illustrated in Fig. 5

In the sampling procedure Eq. (III.4), we can apply �
simultaneously to both axes of [0, 1]2—formally, we apply
the mapping �⌦ �—without changing the distribution of the
resulting random graph, since the �(Ui) are still uniform.
Equivalently, we can leave the Ui untouched, and instead apply
�⌦ � to the function w. The resulting function (�⌦ �) � w
parametrizes the same random graph as w.

Remark III.11 (Monotonization is not applicable). A ques-
tion which often arises in this context is whether a unique
representation can be defined through “monotonization”: On
the interval, every bounded real-valued function can be
transformed into a monotone left-continuous functions by a
measure-preserving transformation, and this left-continuous
representation is unique [e.g. 45, Proposition A.19]. It is
well known in combinatorics that the same does not hold
on [0, 1]2 [15, 45]. More precisely, one might attempt to
monotonize w on [0, 1]2 by first projecting onto the axes, i.e.,
by defining w1(x) :=

R
w(x, y)dy and w2(y) :=

R
w(x, y)dx.

The function w1 can be transformed into a monotone repre-
sentation by a unique MPT �1, and so can w2 by �2. We
could then use (�1 ⌦ �2) � w as a representative of w, but
this approach does not yield a canonical representation: Fig. 6
shows two distinct functions w and w0, which have indentical
projections w1 = w2 = w0

1 = w0
2 (the constant function 1/2)

and determine identical MPTs �1 and �2 (the identity map).
The monotonizations of w and w0 are hence again w and w0,
which are still distinct, even though w and w0 parametrize the
same graph. /

IV. LITERATURE SURVEY

The representation theorems show that any Bayesian model
of an exchangeable array can be specified by a prior on

X is ΘT -random too! ΘT and Θ induce the same distribution on graphs.

Theorem (Hoover)
The graphon Θ underlying a Θ-random graph is unique up to a measure preserving
transformation.
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We have now...

1. Reviewed exchangeability for graphs
(i.e., symmetric {0, 1}-valued arrays representing adjacency).

2. Presented Aldous-Hoover representation theorem in this special case.
Graph is exchangeable if and only if conditionally Θ-random

3. Discussed how to interpret Aldous-Hoover theorem.
Meaning of Θ-random. Θ as the limiting empirical graphon. Θ-nonuniqueness.

4. Shown that probabilistic symmetries lead to statistical models.

Tutorial Outline

1. Exchangeable sequences.

2. Exchangeable graphs and arrays.
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EXCHANGEABLE ARRAYS

Let X = (Xi,j)i,j∈N be an infinite array of random variables.
No longer assuming {0, 1}-values or symmetry of X .
E.g., adjacency matrix for a directed graph, or matrix of user-movie ratings.

Definition (jointly exchangeable array)
We say that X is jointly exchangeable when

X
d
= (Xπ(i),π(j))i,j∈N (64)

for every permutation π : N→ N.

E.g., undirected graph, directed graph. Rows and columns are indexing “same set”.

Definition (separately exchangeable array)
We say that X is separately exchangeable (aka row-column exchangeable) when

X
d
= (Xπ(i),π′(j))i,j∈N (65)

for every pair of permutations π, π′ : N→ N.

E.g., user-movie ratings. Rows and columns indexing different sets.

Daniel M. Roy 47 / 54



EXCHANGEABLE ARRAYS

Example
Elements Xi,j i.i.d.
Separately exchangeable? Jointly exchangeable?

Example
Xi,j = 1 if i = j and Xi,j = 0 otherwise.
Separately exchangeable? Jointly exchangeable?

Example
Let Ui,j be i.i.d. Uniform random variables.
Let Xi,j = f(U00, Ui,0, U0,j , Ui,j) for a suitable function f .
Separately exchangeable? Jointly exchangeable?

Example
Let Ui be i.i.d. Uniform random variables.
Let Xi,j = g(Ui, Uj) for a suitable function g.
Separately exchangeable? Jointly exchangeable?
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EXCHANGEABLE ARRAYS

Definition (Aldous-Hoover, separately exchangeable)
Let Ui,j be i.i.d. Uniform random variables.
An infinite array X is separately exchangeable if and only if

X
d
= (f(U00, Ui,0, U0,j , Ui,j))i,j∈N (66)

for some measurable function f .

Definition (Aldous-Hoover, jointly exchangeable)
Let U{i,j} be i.i.d. Uniform random variables. That is U{i,j} = U{j,i}.

An infinite array X is separately exchangeable if and only if

X
d
= (f(U{0,0}, U{i,0}, U{0,j}, U{i,j}))i,j∈N (67)

for some measurable function f .
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EXCHANGEABLE ARRAYS

Example
Elements Xi,j i.i.d.
Separately exchangeable: f(a, b, c, d) = g(d).

Example
Xi,j = 1 if i = j and Xi,j = 0 otherwise.
Jointly exchangeable: f(a, b, c, d) = 1(b == c).

Example
Let X be Θ-random.
Jointly exchangeable: f(a, b, c, d) = 1(d < Θ(b, c)).
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EXCHANGEABLE ARRAYS

Let Y1, Y2, . . . be an exchangeable sequence. Define Xi,j = Yj .

What does Aldous-Hoover tell us about Y ?

Definition (de Finetti in Aldous-Hoover form)
Let Ui be i.i.d. Uniform random variables.
An infinite sequence Y1, Y2, . . . is exchangeable if and only if

(Yi)i∈N
d
= (f(U0, Ui))i∈N (68)

for some measurable function f .
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EXCHANGEABILITY AND STATISTICS: NOT JUST BAYESIAN!

Exchangeable observation, version 1
Let (f(U0,0, Ui,0, U0,j , Ui,j))i,j∈N be a (partially-observed) exchangeable array,
where f is unknown and (Ui,j)i,j∈N i.i.d. Uniform.

Define F (b, c, d) = f(U0,0, b, c, d). F is a random measurable function.

Exchangeable observation, version 2
Let (F (Ui,0, U0,j , Ui,j))i,j∈N and F ∼ µ,
where µ is unknown and (Ui,j)i,j∈N i.i.d. Uniform.

Problem 1: Even observing entire array X reflects only one realization F from µ.
Solution: Dissociated arrays (F non-random). These are the ergodic measures.
Problem 2: Random functions of the form F (b, c, d) = G(b, c) are “dense”.
Solution: Move to simple arrays, i.e., last parameter is not used.

Simple dissociated array observation
Let Ui, Vj be i.i.d. Uniform random variables.
Let (F (Ui, Vj))i,j∈N be a simple dissociated array, unknown F .

Bayesian approach
Let F be a random measurable function with some prior.
Then X1, X2, . . . is an exchangeable array.
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In joint work with Orbanz [OR13], we show that many nonparametric models of
graphs/networks can be recast as prior distributions on random functions F .
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Fig. 7: Typical directing random functions underlying, from left to right, 1) an IRM (where partitions correspond with a Chinese restaurant process) with
conditionally i.i.d. link probabilities; 2) a more flexible variant of the IRM with merely exchangeable link probabilities as in Example IV.3; 3) a LFRM (where
partitions correspond with an Indian buffet process) with feature-exchangeable link probabilities as in Example IV.10; 4) a Mondrian-process-based model
with a single latent dimension; 5) a Gaussian-processed-based model with a single latent dimension. (Note that, in practice, one would use more than one
latent dimension in the last two examples, although this complicates visualization. In the first four figures, we have truncated each of the “stick-breaking”
constructions at a finite depth, although, at the resolution of the figures, it is very difficult to notice the effect.)

Then, two objects represented by random variables U and U 0

are equivalent iff U, U 0 2 E(N) for some finite set N ⇢ N. As
before, we could consider a simple, cluster-based representing
function where the block values are given by an (fN,M ),
indexed now by finite subsets N, M ✓ N. Then fN,M would
determine how two objects relate when they possess features
N and M , respectively.

However, if we want to capture the idea that the rela-
tionships between objects depend on the individual features
the objects possess, we would not want to assume that the
entries of fN,M formed an exchangeable array, as in the case
of a simple, cluster-based model. E.g., we might choose
to induce more dependence between fN,M and fN 0,M when
N \N 0 6= ; than otherwise. The following definition captures
the appropriate relaxation of exchangeability:

Definition IV.9 (feature-exchangeable array). Let Y :=
(YN,M ) be an array of random variables indexed by pairs
N, M ✓ N of finite subsets. For a permutation ⇡ of N and
N ✓ N, write ⇡(N) := {⇡(n) : n 2 N} for the image. Then,
we say that Y is feature-exchangeable when

(YN,M )
d
= (Y⇡(N),⇡(M)), (IV.7)

for all permutations ⇡ of N. /

Informally, an array Y indexed by sets of features is feature-
exchangeable if its distribution is invariant to permutations of
the underlying feature labels (i.e., of N). The following is an
example of a feature-exchangeable array, which we will use
when we re-describe the Latent Feature Relational Model in
the language of feature-based models:

Example IV.10 (feature-exchangeable link probabilities). Let
w := (wij) be a conditionally i.i.d. array of random variables
in R, and define ✓ := (✓N,M ) by

✓N,M = sig(
P

i2N

P
j2M wij), (IV.8)

where sig : R ! [0, 1] maps real values to probabilities via,
e.g., the sigmoid or probit functions. It is straightforward to
verify that ✓ is feature-exchangeable. /

We can now define simple feature-based models:

Definition IV.11. We say that a Bayesian model of an ex-
changeable array X is simple feature-based when, for some

random function F representing X , there are random feature
allocations B and C of the unit interval [0, 1] such that, for
every pair N, M ✓ N of finite subsets, F takes the constant
value fN,M on the block

AN,M := B(N) ⇥ C(M) ⇥ [0, 1], (IV.9)

and the values f := (fN,M ) themselves form a feature-
exchangeable array, independent of B and C. We say an array
is simple feature-based if its distribution is. /

We can relate this definition back to cluster-based models
by pointing out that simple feature-based arrays are simple
cluster-based arrays when either i) the feature allocations
are partitions or ii) the array f is exchangeable. The latter
case highlights the fact that feature-based arrays relax the
exchangeability assumption of the underlying block values.

As in the case of simple cluster-based models, nonparamet-
ric simple feature-based models will place positive mass on
feature allocations with an arbitrary number of distinct sets.
As we did with general cluster-based models, we will define
general feature-based models as randomizations of simple
models:

Definition IV.12 (feature-based models). We say that a
Bayesian model for an exchangeable array X := (Xij) in X
is feature-based when X is a P -randomization of a simple,
feature-based, exchangeable array ✓ := (✓ij) taking values in
a space T , for some probability kernel P from T to X. We
say an array is feature-based when its distribution is. /

Comparing Definitions IV.5 and IV.12, we see that the
relationship between random functions representing ✓ and X
are the same as with cluster-based models. We now return to
the LFRM model, and describe it in the language of feature-
based models:

Example IV.13 (Latent Feature Relational Model continued).
The random feature allocations underlying the LFRM can be
described in terms of so-called “stick-breaking” constructions
of the Indian buffet process. One of the simplest stick-breaking
constructions, and the one we will use here, is due to Teh,
Görür, and Ghahramani [61]. (See also [63], [52] and [53].)

Let W1, W2, . . . be an i.i.d. sequence of Beta(↵, 1) random
variables for some concentration parameter ↵ > 0. For every
n, we define Pn :=

Qn
j=1 Wj . (The relationship between

1. Infinite Relational Model (IRM) of Kemp et al. (2008) based on Chinese
restaurant process (Dirichlet process).

2. IRM where the interaction probabilities are also an exchangeable array. [OR]

3. Infinite Feature Relational Model (IFRM) of Miller et al. (2010) based on Indian
buffet process (Beta process).

4. Mondrian process-based relational model of R. and Teh (2009).

5. Gaussian-process-based relational model. Lloyd et al. NIPS 2012 show how
many factorization models fit into this framework.
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We have...

1. Reviewed exchangeability for sequences, graphs, and arrays

2. Presented de Finetti and Aldous-Hoover representation theorems.
X exchangeable if and only if X

d
= (F (...)) for a random F .

3. Discussed how to interpret de Finetti and Aldous-Hoover.
ν / Θ / F is the limiting empirical distribution/graphon/array. ν unique. Θ and F
only unique up to a m.p.t.

4. Shown how probabilistic symmetries lead to statistical models.

More reading

1. Orbanz and Roy. Bayesian Models of Graphs, Arrays and Other Exchangeable
Random Structures.
Preprint available at http://danroy.org

2. Aldous. Representations for partially exchangeable arrays of random variables.

3. Kallenberg. Probabilistic symmetries and invariance principles.
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