Research Science Institute 1998, Intel STS 1999

Implementation of Constraint Systems for Useless Variabl&limination

Daniel M. Roy
under the direction of
Prof. Mitchell Wand
Northeastern University

Abstract gorithm is simply never run (Muchnick, 1997). The useless
variable elimination algorithm determines which callshe t
complex algorithm are superfluous, and removes these calls.

This paper details not only the underlying theory, but also
the structural composition and testing of the Useless VAri-
able Removal Program (UVARP), the first implementation of
an algorithm for eliminating useless variables presented b
Wand and Siveroni (1999). UVARP takes functional Scheme
code and returns a new version of the code with the useless
variables removed. UVARP was tested on several sample
programs to evaluate its performance and illustrate itskwea
nesses.

Superfluous variables are often produced as the
byproducts of program transformations, compila-
tion, and poorly written code. These variables are
irrelevant to the computational outcome of their
programs. Eliminating them as a means of higher-
level optimization may increase program execution
speed. This paper explores an implementation of
Wand and Siveroni’s algorithm for useless variable
elimination. The algorithm is shown to remove su-
perfluous variables that are accessed, updated, and
passed between functions, as well as colldpse
expressions when all theet expression’s vari- .
ab?es are superfluous. The algorithm does not pre- 2 Control Flow and Dependency Analysis
serve non-termination nor remove variables whose Theory
contributions are constant. 2.1 Control Flow Analysis
. UVARP parses Scheme code, transforming it intoititer-
1 Introduction nal syntax an untyped, labeled, lambda calculus. UVARP
Compilation and other program transformations often generfirst assigns a unique numerical label to each Scheme term.
ate superfluous variables whose values are irrelevant to tHehe combined unique label and term compose an expression
final outcome of a computation (Wand and Siveroni, 1999)(Nielson and Nielson, 1997). For example, in the expression
These variables are termedeless(Shivers, 1991). Com- (0 fn (z) (+ « 1)), the number, 0, represents the expression’s
mercial optimizing compilers use a variety of optimization label; the remainder of the expression represents the term.
algorithms, the majority of which perform code streamlin- This term is composed of the symbaln, followed by the
ing and, consequently, ignore useless variables (Wan@)199 arguments of the typéyg) (+ z 1).! In order to avoid confu-
These compilers optimize only the code, not the algorithmsion between similarly named variables in different sexgio
upon which the programs are based. Although these optief the program, the internal syntax is then alpha conveged,
mizations yield impressive results, higher-level optiatian process that assigns a unique name to every unique variable.
such as dead code elimination and algorithm optimization ca After the transformation to internal syntax, UVARP per-
dramatically improve program performance (Wand, 1998). forms Nielson and Nielson’s zero-order control flow analysi
This project deals with an extension of dead code elimina{OCFA). The algorithm visits each expression and any sub-
tion known asuseless variable eliminatiorThrough control expression within that original expression. Therefore th
flow analysis and dependency analysis, the useless variable&CFA algorithm recursively steps downward through the en-
elimination algorithm generates a system of constrainkst-t tire program. OCFA generates two sets of information: the
is, a series ofubset or equal teelationship between the sets environmentaind configuration For each variable, the en-
created from control flow and dependency analysis. Thesegironment,j(z), is the set of labels of the possible values of
constraints can be solved algebraically to determine whichhe variabler (Nielson and Nielson, 1997). For each labeled
variables are useless not only in each section of the pragrarferm/, the configuration('(1), is the set of labels of the possi-
but in the entire program (Wand and Siveroni, 1999). Deagle values of label (Nielson and Nielson, 1997). During the
code elimination can be more effective than code streamanalysis, constraints of the forsubset and equal tare es-

lining; while streamlining will only speed up a complex al- tablished between various configurations and environments
gorithm, an unreachable code elimination algorithm will re

move that algorithm altogether if it determines that the al- *f(z) =z +1

These constraints are algebraically solved, synchromahet application site labeled is useful only if it appears in

program’s analysis. DActuals(é D Z)(l) where DActuals is defined as:
For example, in Table 2.1} ambda (z) (addl x)) is an ex- ,
pression in whickr is the only variablej () contains all pos- DActuals ¢ p 5 (1) = DFormalsp s, (I') (1)

sible values of:. The possible values fam (z) (...) are the
members of the s&t(0), the possible values f¢t var add1)
are the members of the s€{1), and the possible values for
(2 var z) are the members of the s€t2).

where .
S(1) = (tho ¢ Lty Al e Cly). (2)

The id-val pairsin eachet term are removed if their respec-

. ; .. tive ids are useless to the body of their respedtieé¢ term
OCFA analysis uses a universeto map each label to its (Wand and Siveroni, 1999). If all of the id-val pairs are re-

respective term. Thugi(l) is the term labeled According moved from d et expression, the entileet construction is
to Nielson and NielsonX,!) = (C, p) if C andj satisfy the replaced by its body. '
constraints generated from the definitionteffor the term

¥ (1) (Nielson and Nielson, 1997}, 1) = (C,) is read as: 3 The Creation of UVARP
The expression is consistently describely the set€C and 3 IS
pin universeX. | is defined differently for each syntactical -1 Internal Syntax

expression supported by UVARP. A procedure was devised to parse the original code into the

For a constantC, 5) always consistently describgs, 7). internal syntax. UVARP converts the supported Scheme ex-
For any variabler labeled!, (£, 1) = (C',ﬁ) if and only if pressions into one of eight supported syntactical construc

R A] . A tions: const, var, fn, fun, prim app, if,
plx) S C(.l)'. _For example, in Table 2_']'0(35) c C(2). ._andl et . These functions closely mimic their Scheme coun-
Further definition of control flow analysis may be found in

) terparts. Some Scheme constructions were not supported,
Appendix A. such as side effects.Table 2 lists the properties of each of
2.2 Dependency Analysis the syntactical constructioss.

While performing OCFA analysis to determineand ¢, -2 Discussion of the Structure of UVARP

UVARP conducts dependency analysis to create ai3@), = UVARP was divided into two subprograms: an analyzer and a

of the set of all variables that contribute to the value of-a la transformation engine. The analyzer performs both the con-

beled expressions(I) (Wand and Siveroni, 1999). A vari- trol flow analysis and the dependency analysis, creating the

able is deemed useless ft!) if it does not appear iP(I) setsC, , andD. The transformation engine outputs the orig-

(Wand and Siveroni, 1999). inal program as a new program with the useless variables re-
During dependency analysis, each expression is evaluatedoved.

by the judgmentx, i) = (C,p, D). This judgment states The first step was to convert the external scheme code into

that in the universey;, the expressioi (1) is consistently de- the labeled, lambda calculus. UVARP received the original

scribed by the configuration, environment, and dependencgode as a Scheme list. The list was recursed, adding labels

sets. For the above judgment to be true, the judgmengnd separating each separate construction into its owissubl

(=,1) = (C,p), must also be true. As with control flow This new code was stored by the expression database, which

analysis, the dependency judgment is defined differently fo€ncapsulated the list of the internal syntax.

each type of syntactical expression. For constants, thg jud _ After conversion, the analyzer engine was executed. In or-

ment is always true. For a variabielabeled! the judgment der to handle a flexible range of syntactical constructians,

is satisfied only if: € D(1). Trivially, the variable term relies Procedure was devised to receive the current syntactioal sy

upon its variable. Further definition of dependency analysi @0l and execute the corresponding sub-procedure for each al

may be found in Appendi®?. gorithm. These sub-procedures perform OCFA and depen-
dency analysis, using the solving engine to solve and store
2.3 Transformation the sets(, p, andD. The analyzer also uses the expression

Transformation occurs after the completion of the controlInterface to retrieve the internal syntax from memory. Fégu

flow and dependency analysis. Transformation takes place i% depicts the structure of the analyzer.
P y ySIS. P The solving engine was divided into two sub-engines: the

three locations: functional terms, application sites, hat control flow solver and the dependency solver. The control

terms. : | h & di N
At each functional term, the formal parameters that arJ ow solver generates the sef, ..., G and pg,, o P
nd maintains successor (subset and equal to) relatianship

useless to the body of the function are removed (Wand ang i h ‘s similarly. the d d f |
Siveroni, 1999). A formal parameter for a functional expres etween Nese sets. similarly, € dependency Tow Soiver
generates the sef3y, ..., D,, and maintains all the successor

sion labeled is useful only if the formal parameter is useful relationships between these sets. The solving engine faeds t
to the body of the functionb Formals(p,s) (lhoay). (Refer smallest solution to these successor constraints.

to Appendix?? for the definition of DFormals.)
At each application site, the actual parameters that are 2Side effects are commands that require ordered execugon i.

useless to the functions called from this site are removedssignments, block structures.

(Wand and Siveroni, 1999). An actual parameter for an 3For details, see Wand and Siveroni (1999).

Language Expression
Scheme (lambda (z) (addl z))
Internal Labeled Lambda Calculys(0 fn (z) ((1 var addl) (2 var xz)))

Table 1: Translation of a scheme expression into internal-labédetbda calculus.

Term Properties
const ¢ A constantg, such as a number, string, or character
var x A variable,v, whose value is not constant.
fn (v1, ..., Un) thody) A lambda expression wheig, ..., v, are

the formal parameters arigl,q, represents the body.
funy (v1, ..., Un) thody A recursive function with formal

parameters;, ..., v, and bodyt,.qy. the fun expression
also defines a local namg,

primty, ...ty Any undefined function that is assumed
to use all its actual arguments, ..., ¢,

app to, t1, .-, tn An application site with operatap and
operandsy, ..., t,.

if teond tirue tralse A conditional expression. If.,,,q evaluates

to true, thent,,. is evaluated. Elsé ;.. is evaluated.
et ((vi” 8§), ..., (0T £0%)) thoay | Alist of local variables(vi? 1), ..., (v)! £5%)
defined for the body,.qy .

Table 2: Internal Syntax: UVARP parses the functional Scheme caodastorming it into the above syntax.

above hypothetical condition, the stored procedure woald b
* f executed. This allowed UVARP to solve the sets synchronous
to the execution of the algorithm without actively recheki
past conditions.
Both of the sub-engine solvers access their respective set
Expression databases through the graph interface; this interfacepsnea

Database lates the graph data structure of the g8t$), andD. Figure
2 depicts the structure of the solving engine.

Solving

Engine

Figure 1: Structure of Analyzer: The arrows represent the data

flow. The analyzer accesses the 8tg, andD through the analy-
sis interface. The analysis interface encapsulates thingangine
which continually solves the sets. The expression intertcap-
sulates the internal code which is stored in the expressitabdse.

»[Graph Interface j

Graph
Structure

During control flow analysis at application site, UVARP
must generate successor constraints only if conditioasd-st
ments of the form] e C(ly), become true. If at any point Expression
the condition becomes true, UVARP must solve the corre-
sponding successor relationship. These conditional-state\ Database
ments posed a problemlibecame a member after the condi-
tion was initially tested. In order to avoid combinatoriat e
plosion in larger problems due to continual re-testing &f th
conditional statements, a system was devised in which thejgure 2: Structure of Solving Engine: The arrows represent the
conditional statements and their corresponding cong$rain data flow of the solving engine and the expression databake. T
were stored as procedures with the sets. Anytime a mengraph interface encapsulates the graph structure whictildsithe
ber was added to a set, the procedure would simply check itorage and retrieval of the sets, their members, and tbeaes-
there were any pending conditions for that member. If at anypors. The expression builder converts the input Scheme ictdle

point the label was added to the sél(lo), thus satisfying the the internal labeled lambda calculus.

[Expression Builder]

External Code

i : =7
Program Flow H Program Flow
—~— : -
TRANSFORMATION : TRANSFORMATION
ENGINE E ENGINE

4 T [Analysis InterfaceJ [Expression Interfac% A T [Analysis Inten‘ace] { Expression Interfac%

B

Figure 3: Structure of Transformation Engine: The arrows repre- t t ¢ t t t
sent the data flow of the transformation engine. The transdtion
engine executes after the analyzer completes the contwldia

dependency analysis. This transfer in program flow is remtesl Solving Expression
by the single arrow labeled “Program Flow.” The transforiomat Engine Database
engine accessés, p, D through the analysis interface. The trans-
formation engine uses this information to convert the ceteaved 3 -->
. . Transformation Engine A
through the expression interface.
Data Flow v Program Flow
- 9

Analyzer Data Flow

. . Graph Interface Expression Builder
The transformation engine executes after the analyzer has - » () ()

finished the control flow and dependency analysis. The Solving Engine Data Fio Graph
transformation engine accesses the dependency informatio . <FI— Structure External Code
through the analysis interface, and accesses the intesdal ¢ = ~29" ™"

through the expression interface. The internal code istran _)
formed according to the dependency information. The transEigure 4: Structure of UVARP: The overall data flow of UVARP is
formed code, stored in external syntax, is returned from thélepresented by double arrows. The single arrows represegtam
transformation engine. Figure 3 depicts the structure ef th oW

transformation engine.

The expression interface was designed to simplify the manyarameter lists. The program demonstrates UVARP's ability
agement of the expression database. The expression agerfay, remove variables that are accessed, updated, and passed

consists of member functions that encapsulate the underlysatween functions, yet do not contribute to the final compu-
ing expression database; this database, in turn, is bailt fr t5tional outcome of the program.

the external code by the expression builder. The structural

overview of UVARP is presented in Figure 4. Test 2 - Collapsed Let
Original Code:
- (let ((a2) (b-1) (c 3
3.3 Testing UVARP (f (lanbda (x y 2) (- (* 4 (+ x y)) 2))))

After the design and programming were finished, UVARP (G0 1ooper (v i) (1T €= a0 v o o)
was tested with many programs. The four most significantare 11 1))))

included in this paper to demonstrate the strengths and-weak .
nesses of UVARP. All of the test programs wegeecifically (s s oopor uw 1)
engineered to test and illustrate the strengths and wealases (if (>w10) w

of the underlying algorithmim UVARP. (fooper (+ wu) (* u-4)))) 11

The second sample program tested UVARP’s ability to

Test 1 - Bogus Variable completely collapse &et expression when all of theet

Origi nal Code:

(let ((loop (fun loop (a bogus j) expression’s local variables (id-val pairs) have no effact
(if (>] 100) a _ the computational outcome of the program. The code for Test

(1 00p o '10(1’?) a)§) bogus 2) (+11)))))) 2 presented UVARP withlaet expression in which all of the

local variables were superfluous. The enttie# construction

Processed Code: . was removed along with all instances of the local variables.

(let ((!oop (_fun loop (aj)
(it (>j 100) a Test 3 - Inadvertent Removal of an Infinite Loop
(loop a (+1j))))))

Origi nal Code:
(toop b 1))))) (let ((loop (fun |oopa (a bogus j)

: i ; (if (>] 100) a
The first sample program was specifically engineered to (1oopa (+ aj) (infloop bogus) (+] 1)))))

test whether UVARP would remove a variable which had N0 (infioop (fun infloopa (x) (infloopa (+ x 1)))))
effect on the final computational outcome of the program. (loop a11))))

UVARP, after processing Test 1, removed the variable, f,' Zfefffgog"?fhn | oopa (a |)

gus The variable was removed from all formal and actual (if (> 100) a (loopa (+ aj) (+j 1))))1)

(loop a 1)) OCFA can not recognize intertwined useless variables be-

; - OCFA neglects function call sites. First-order aintr
The third sample program originated from Wand and®ayse . .
Siveroni’s paper on useless variable elimination (Wand an(ﬁ[ow analysis (1CFA), an extension of OCFA, generates a set

Siveroni, 1999). This problem illustrates a weakness inC @ndp for each possible call site instead of a singlend
UVARP’s handiing of non-termination. The program makes? for the entire program (Nielson and Nielson, 1997). Ac-
a call to an infinite loop which has no effect on the final com-cordingly, 2CFA keeps track of @ and for each call site
putational outcome of the program. UVARP removed the calthat may call every other possible call site (Nielson and-Nie
to the infinite loop. Test 3 reveals an inherent problem inson, 1997). This process can be repeated infinitely. This is
the algorithm. UVARP, when it removes the useless variabl&nown as Nielson and Nielson's infinitary control flow analy-
bogus, eliminates the call to the functioim floop, thus re- sis (Nielson and Nielson, 1997). Infinitary control flow anal
moving the call to an infinite loop and therefore changing theysis would provide an adequate environment for developing
behavior of the prograrh. an algorithm that could remove intertwined variables beeau
Although the removal of an infinite loop may seem advan-it evaluates every call site independent of other call siféss
tageous, this drastic change in program behavior is an unagxtension to the useless variable elimination algorithmidto
ceptable byproduct of UVARP because the algorithm couldProvide a dramatic increase in execution speed.
create unperceived side effects. One solution would be an ex
tension to the Dependency Analysis that deems any variable Conclusion
useful that contributes to the non-termination of a program ;yaArp reveals only a glimpse of the capabilities of high-
Anothersolut_lon, though less robust and possmly_ detrialen |, e optimizing compilers. The design, programming, and
to the execution speed, would be to preserve variables whog€ging of UVARP marks the first implementation of Wand
values contribute to any recursive function. and Siveroni's useless variable elimination algorithmcaih

Test 4 - Constant Value be hypothesized that an implementation of infinitary con-
Original Code (same as Processed Code): trol flow analysis will increase the optimizing capabilgief
(let ((a 2) (b 24) (f (lanbda (x y) (+ x ¥)))) UVARP.

((lambda (i j k) (f (+1i (f ab)) (+] k))) 12 23))

The fourth sample program illustrates UVARP's inability 6~ Acknowledgments
to remove variables with constant values. The functifn, . . .
when called with the variablesandb, will always return 26, | Would like to thank Mitchell Wand of Northeastern Univer-
From this specific call site, the functighis useless; the con- Sty for the time he devoted to me and this project. | would

stant 26 can be inserted instead of the function call. UVARFaISS like t?]t?al?k .'93” S!veéoni f%his 3sﬂstanr$e. My tm”kh
returned an identical code to the input code, unable toiyent 0 Ramesh Johari, Justin Bernold, and the other tutors at the

any superﬂuous variables. Research Science Institute for their assistance in ragsio

in Test 4, the limitations of OCFA are revealed. In Test 4,And finally, I would like to thank the Center for Excellence
there are two sites from which the functigis called. In first I Education, the Research Science Institute, and Mrs. Di-
site, (f (¢ (...)) (+ j k)), the functionf relies on both of its Gennaro for providing this research opportunity.
actual parameters because these arguments are not constant
However, the second call site ¢f (f a b), will always return ~ R€ferences
a constant, 26, unlessor b are modified. Thereforg f a b) S. S. Muchnick. Advanced Compiler Design and Implementation

could be replaced with 26. The useless varialpfea b), a, Morgan Kaufmann Publishers, 1997.

andb were not removed because OCFA ignores the calling sit¢: Njelson and H. R. Nielson. Infinitary control flow analysiscol-

when it assess the judgemetE, |) = (C, p), for functions. lecting semantics for closure analysis. Rroceedings 24th An-
nual ACM Symposium on Principles of Programming Languages

Shivers. Control-Flow Analysis of Higher-Order Languages

UVARP was able to remove the useless variables in the flrs(l)'PhD thesis, Carnegie-Mellon University, May 1991.

three test cases but failed to optimize the fourth test case. o
UVARP finds variables that have no computational effectM- Wand. Personal communication, July 1998.

throughout the prograrand removes the occurrences of theseM. Wand and |. Siveroni. Constraint systems for useless- vari
variable within the program. UVARP was unable to remove able elimination. InPOPL '99: Proceedings of the 26th ACM
the useless variables from Test 4 because these variaties we SIGPLAN-SIGACT symposium on Principles of programming
not useless to the entire program; the first call site require anguages pages 291-302, New York, NY, USA, 1999. ACM
both its arguments, whereas the second call site could be re- Press- ISBN 1-58113-095-3.

placed by a constant. Therefore, UVARP can not remove

itn_ijer:witnet(;i1 u]§elelss varia:btlpyarliab[[es tWh?ie vaIuels con- A Control Flow Theory

ribute to the final computational output yet have only a con- . .
stant effect or finite setpof effects whzre)z:\simple asé/igmmerfor any function,f n, labeled! and its body labeled’,

would replace the variable. (,0) E (C,p) when(S,1) = (C,p) andl € C(I). Re-
cursive functionsf un localname, are identical except for

“First observed by Wand and Siveroni (1999). an additional relationt € p(localname).

Primitive function$ labeled! of the form (glott...tln)
are consistently described b{C,p) when their bodies,
th .. tln, are consistently described by(’,5). Thus,

(,5L) E(C,p),i=1,..,n.

| f expressions of the forrif ¢ then t}! else %) la-
beledl, wheret!» represents a term labeleglare consistently
described by(C, p) when (%, 1) = (C,p),i = 1,2,3 and
both possible results of thief expression((1;) andC (l,),
are possible results for the entire expresdionTherefore,
C(l) U C(ly) € C(1) must be true fox,1) = (C,p) to
be true.

For anyl et expression labeledlof the form (let = =
thintl2), (2,0) = (C,p) when(Z, 1) = (C,p),i = 1,2.
Furthermore, every possible value farbecomes a possible

value forz, thusé(ll) C p(z). Finally, every possible value
for the body{,, is a possible value for the entiret expres-

sion, thusC(l5) € C(1).

The last syntactical representation is thpp labeled!
in the form (¢t t}*..tl"). Each sub-expressionty...t,,
must be consistently described K¢, 5). Furthermore,
for every member!’ of C(ly), where X(I') is either
(fn (z1...25) (bodylff) or (funy (x1...x,) (bodylff), the fol-
lowing relationships are built:

C(l) C pxi),i=1,...n
C(ly) C C()

B Dependency Analysis

For every function fn labeled 1
(fn (@1 wwn) t0), (50 F
X(lo) = (C,p,D).

gf the form
(C,p,D) when

to the entire functionD(ly) — {z1, ..., zn} C D(1).
Similarly, the recursive functiohun labeled! of the form

l ’
(fun localname (z1...z,) ti) is consistently described by X(I") = (£fn (y1 --yn) tyoge)V (Funy (y1, . ..

the (C, p, D) when, similar to theéf n expression, the body,
tho is consistently described by, 5, D). In addition, all

useful variables in the body except those passed as formd
parameters to thEun expression are also useful to the en-

tire expression. However, tHecalname variable is useless

to the computational value of the entire expression. Thus,

D(ly) — {localname, x1,...,x,} C D(I).

For every primitive expression labelédand in the form
(g t1.tlr), (3,1) = (C, p, D) when(S, L) |= (C, p, D) A
D) € D(),i=1,...,n.

For if expressions labeled! in the form
(if tY then t}' else t2), %(l;) & (C,p,D) when
all terms, ¢;,14
(C,p,D). Since the outcome of théf expression is

Since every variable useful to the
body except those passed as formal parameters is also use

= 0,1,2, are consistently described by

in all the terms are also useful to the entire expression.
Thus, D(lp) U D(l1) U D(l2) € D(l) must be true for
>(I;) E (C, p, D) to be true.

For | et expressions labeled in the form (1et z =
t'* in ¢2), the judgment is true wheR(l;) = (C,p,D)
wherei = 1,2. Furthermore, every useful variable in the
body exceptr is possibly useful to the entire expression.
Thus,D(l3) — = € D(I). And finally, if z is possibly useful
in the body, then all the useful variables in the expressfon o
x = tlf, are possible values for the entire expression. Thus,
x € D(l2) = D(l1) C D(I).

As observed by Wand and Siveroni, if a closure that flows
to an application site relies on itsth parameter, then all
closures must also rely on theith parameters Wand and
Siveroni (1999). These extra conditions can be met by satis-
fying the following condition:

I,1" € C(l) = DFormals(p 5)(I') = DFormalsp 5 (I")

where C(l) is the operator of the application site, and
DFormalsp s (l') are the useful formal parameters for the
term labeled’ with respect taD andX..

Therefore for any application site labelédf the form
(t t'* ..ti) is consistently described B¢, 5, D) when, for
all the site’s operand&’, ..., tl», (%,1;) = (C, p, D). Fur-
thermore, since all useful variables to the operator artulise
variables to the entire expressiaR(l,) C D(l). Finally,
for every closurd’ that may flow to that site, in the form
of (fn (z1 ...xy) tél;";s) or (fun = (z1 ...zp) tél;"js), every
useful variable td.q, is also useful to the application site.
Therefore:

1" € C(lo) A i € D(lpody) = D(I;) CD(),i=1,...,n
To force the dependency analysis to maintain the condition,

ﬁjll” € C(I) = DFormals(p 5)(I') = DFormalsp 5 (")

the following condition is added: For dll where,

l
t body’)7

’ yn) body’

andl’,l"” € C‘(lo), useful variables t@,.q, are forced to be
Feful forlpody: -

VI U1 € Clo) A zi € D(lbody)
= Y; € D(lbody/),i = 1, Lo,

not known beforehand, all of the variables that are useful

SPrimitive functions are undefined functions that require\l-
ues of all their formal parameters.

