
Research Science Institute 1998, Intel STS 1999

Implementation of Constraint Systems for Useless VariableElimination

Daniel M. Roy
under the direction of
Prof. Mitchell Wand

Northeastern University

Abstract

Superfluous variables are often produced as the
byproducts of program transformations, compila-
tion, and poorly written code. These variables are
irrelevant to the computational outcome of their
programs. Eliminating them as a means of higher-
level optimization may increase program execution
speed. This paper explores an implementation of
Wand and Siveroni’s algorithm for useless variable
elimination. The algorithm is shown to remove su-
perfluous variables that are accessed, updated, and
passed between functions, as well as collapselet
expressions when all thelet expression’s vari-
ables are superfluous. The algorithm does not pre-
serve non-termination nor remove variables whose
contributions are constant.

1 Introduction
Compilation and other program transformations often gener-
ate superfluous variables whose values are irrelevant to the
final outcome of a computation (Wand and Siveroni, 1999).
These variables are termeduseless(Shivers, 1991). Com-
mercial optimizing compilers use a variety of optimization
algorithms, the majority of which perform code streamlin-
ing and, consequently, ignore useless variables (Wand, 1998).
These compilers optimize only the code, not the algorithms
upon which the programs are based. Although these opti-
mizations yield impressive results, higher-level optimization
such as dead code elimination and algorithm optimization can
dramatically improve program performance (Wand, 1998).

This project deals with an extension of dead code elimina-
tion known asuseless variable elimination. Through control
flow analysis and dependency analysis, the useless variable
elimination algorithm generates a system of constraints—that
is, a series ofsubset or equal torelationship between the sets
created from control flow and dependency analysis. These
constraints can be solved algebraically to determine which
variables are useless not only in each section of the program,
but in the entire program (Wand and Siveroni, 1999). Dead
code elimination can be more effective than code stream-
lining; while streamlining will only speed up a complex al-
gorithm, an unreachable code elimination algorithm will re-
move that algorithm altogether if it determines that the al-

gorithm is simply never run (Muchnick, 1997). The useless
variable elimination algorithm determines which calls to the
complex algorithm are superfluous, and removes these calls.

This paper details not only the underlying theory, but also
the structural composition and testing of the Useless VAri-
able Removal Program (UVARP), the first implementation of
an algorithm for eliminating useless variables presented by
Wand and Siveroni (1999). UVARP takes functional Scheme
code and returns a new version of the code with the useless
variables removed. UVARP was tested on several sample
programs to evaluate its performance and illustrate its weak-
nesses.

2 Control Flow and Dependency Analysis
Theory

2.1 Control Flow Analysis
UVARP parses Scheme code, transforming it into theinter-
nal syntax: an untyped, labeled, lambda calculus. UVARP
first assigns a unique numerical label to each Scheme term.
The combined unique label and term compose an expression
(Nielson and Nielson, 1997). For example, in the expression
(0 fn (x) (+ x 1)), the number, 0, represents the expression’s
label; the remainder of the expression represents the term.
This term is composed of the symbol,fn, followed by the
arguments of the type,(x) (+ x 1).1 In order to avoid confu-
sion between similarly named variables in different sections
of the program, the internal syntax is then alpha converted,a
process that assigns a unique name to every unique variable.

After the transformation to internal syntax, UVARP per-
forms Nielson and Nielson’s zero-order control flow analysis
(0CFA). The algorithm visits each expression and any sub-
expression within that original expression. Therefore, the
0CFA algorithm recursively steps downward through the en-
tire program. 0CFA generates two sets of information: the
environmentandconfiguration. For each variablex, the en-
vironment,ρ̂(x), is the set of labels of the possible values of
the variablex (Nielson and Nielson, 1997). For each labeled
terml, the configuration,̂C(l), is the set of labels of the possi-
ble values of labell (Nielson and Nielson, 1997). During the
analysis, constraints of the formsubset and equal toare es-
tablished between various configurations and environments.

1f(x) = x + 1

These constraints are algebraically solved, synchronous to the
program’s analysis.

For example, in Table 2.1,(lambda (x) (add1 x)) is an ex-
pression in whichx is the only variable.̂ρ(x) contains all pos-
sible values ofx. The possible values forfn (x) (...) are the
members of the set̂C(0), the possible values for(1 var add1)

are the members of the setĈ(1), and the possible values for
(2 var x) are the members of the setĈ(2).

0CFA analysis uses a universeΣ to map each label to its
respective term. Thus,Σ(l) is the term labeledl. According
to Nielson and Nielson,(Σ, l) |= (Ĉ, ρ̂) if Ĉ andρ̂ satisfy the
constraints generated from the definition of|= for the term
Σ(l) (Nielson and Nielson, 1997).(Σ, l) |= (Ĉ, ρ̂) is read as:
The expressionl is consistently describedby the setsĈ and
ρ̂ in universeΣ. |= is defined differently for each syntactical
expression supported by UVARP.

For a constant,(Ĉ, ρ̂) always consistently describes(Σ, l).
For any variablex labeledl, (Σ, l) |= (Ĉ, ρ̂) if and only if
ρ̂(x) ⊆ Ĉ(l). For example, in Table 2.1,̂ρ(x) ⊆ Ĉ(2).
Further definition of control flow analysis may be found in
Appendix A.

2.2 Dependency Analysis

While performing 0CFA analysis to determinêρ and Ĉ,
UVARP conducts dependency analysis to create a set,D(l),
of the set of all variables that contribute to the value of a la-
beled expressionsΣ(l) (Wand and Siveroni, 1999). A vari-
able is deemed useless forΣ(l) if it does not appear inD(l)
(Wand and Siveroni, 1999).

During dependency analysis, each expression is evaluated
by the judgment(Σ, l) |= (Ĉ, ρ̂,D). This judgment states
that in the universe,Σ, the expressionΣ(l) is consistently de-
scribed by the configuration, environment, and dependency
sets. For the above judgment to be true, the judgment,
(Σ, l) |= (Ĉ, ρ̂), must also be true. As with control flow
analysis, the dependency judgment is defined differently for
each type of syntactical expression. For constants, the judg-
ment is always true. For a variablex labeledl the judgment
is satisfied only ifx ∈ D(l). Trivially, the variable term relies
upon its variable. Further definition of dependency analysis
may be found in Appendix??.

2.3 Transformation

Transformation occurs after the completion of the control
flow and dependency analysis. Transformation takes place in
three locations: functional terms, application sites, andlet
terms.

At each functional term, the formal parameters that are
useless to the body of the function are removed (Wand and
Siveroni, 1999). A formal parameter for a functional expres-
sion labeledl is useful only if the formal parameter is useful
to the body of the function,DFormals(D,Σ)(lbody). (Refer
to Appendix?? for the definition of DFormals.)

At each application site, the actual parameters that are
useless to the functions called from this site are removed
(Wand and Siveroni, 1999). An actual parameter for an

application site labeledl is useful only if it appears in
DActuals(Ĉ,D,Σ)(l) where DActuals is defined as:

DActuals(Ĉ,D,Σ)(l) = DFormals(D,Σ)(l
′) (1)

where
Σ(l) = (tl00 tl11 ...tlnn) ∧ l′ ∈ Ĉ(l0). (2)

The id-val pairs in eachlet term are removed if their respec-
tive ids are useless to the body of their respectivelet term
(Wand and Siveroni, 1999). If all of the id-val pairs are re-
moved from alet expression, the entirelet construction is
replaced by its body.

3 The Creation of UVARP
3.1 Internal Syntax
A procedure was devised to parse the original code into the
internal syntax. UVARP converts the supported Scheme ex-
pressions into one of eight supported syntactical construc-
tions: const, var, fn, fun, prim, app, if,
andlet. These functions closely mimic their Scheme coun-
terparts. Some Scheme constructions were not supported,
such as side effects.2 Table 2 lists the properties of each of
the syntactical constructions.3

3.2 Discussion of the Structure of UVARP
UVARP was divided into two subprograms: an analyzer and a
transformation engine. The analyzer performs both the con-
trol flow analysis and the dependency analysis, creating the
setsĈ, ρ̂, andD. The transformation engine outputs the orig-
inal program as a new program with the useless variables re-
moved.

The first step was to convert the external scheme code into
the labeled, lambda calculus. UVARP received the original
code as a Scheme list. The list was recursed, adding labels
and separating each separate construction into its own sublist.
This new code was stored by the expression database, which
encapsulated the list of the internal syntax.

After conversion, the analyzer engine was executed. In or-
der to handle a flexible range of syntactical constructions,a
procedure was devised to receive the current syntactical sym-
bol and execute the corresponding sub-procedure for each al-
gorithm. These sub-procedures perform 0CFA and depen-
dency analysis, using the solving engine to solve and store
the sets,Ĉ, ρ̂, andD. The analyzer also uses the expression
interface to retrieve the internal syntax from memory. Figure
1 depicts the structure of the analyzer.

The solving engine was divided into two sub-engines: the
control flow solver and the dependency solver. The control
flow solver generates the setŝC1, ..., Ĉn and ρ̂x1

, ..., ρ̂xm
,

and maintains successor (subset and equal to) relationships
between these sets. Similarly, the dependency flow solver
generates the setsD1, ...,Dn and maintains all the successor
relationships between these sets. The solving engine finds the
smallest solution to these successor constraints.

2Side effects are commands that require ordered execution i.e.
assignments, block structures.

3For details, see Wand and Siveroni (1999).

Language Expression
Scheme (lambda (x) (add1 x))
Internal Labeled Lambda Calculus(0 fn (x) ((1 var add1) (2 var x)))

Table 1: Translation of a scheme expression into internal-labelledlambda calculus.

Term Properties
const c A constant,c, such as a number, string, or character
var x A variable,v, whose value is not constant.
fn (v1, ..., vn) tbody) A lambda expression wherev1, ..., vn are

the formal parameters andtbody represents the body.
fun y (v1, ..., vn) tbody A recursive function with formal

parametersv1, ..., vn and bodytbody. the fun expression
also defines a local name,y.

prim t1, ..., tn Any undefined function that is assumed
to use all its actual arguments,t1, ..., tn

app t0, t1, ..., tn An application site with operatort0 and
operandst1, ..., tn.

if tcond ttrue tfalse A conditional expression. Iftcond evaluates
to true, thenttrue is evaluated. Else,tfalse is evaluated.

let ((vid
1 tval

1), ..., (vid
n tval

n)) tbody A list of local variables,(vid
1 tval

1), ..., (vid
n tval

n)
defined for the body,tbody.

Table 2: Internal Syntax: UVARP parses the functional Scheme code, transforming it into the above syntax.

ANALYZER

Expression Interface

Expression

Database

Analysis Interface

Engine

Solving

Figure 1: Structure of Analyzer: The arrows represent the data
flow. The analyzer accesses the setsĈ, ρ̂, andD through the analy-
sis interface. The analysis interface encapsulates the solving engine
which continually solves the sets. The expression interface encap-
sulates the internal code which is stored in the expression database.

During control flow analysis at application site, UVARP
must generate successor constraints only if conditional state-
ments of the form,l ∈ Ĉ(l0), become true. If at any point
the condition becomes true, UVARP must solve the corre-
sponding successor relationship. These conditional state-
ments posed a problem ifl became a member after the condi-
tion was initially tested. In order to avoid combinatorial ex-
plosion in larger problems due to continual re-testing of the
conditional statements, a system was devised in which the
conditional statements and their corresponding constraints
were stored as procedures with the sets. Anytime a mem-
ber was added to a set, the procedure would simply check if
there were any pending conditions for that member. If at any
point the labell was added to the set̂C(l0), thus satisfying the

above hypothetical condition, the stored procedure would be
executed. This allowed UVARP to solve the sets synchronous
to the execution of the algorithm without actively rechecking
past conditions.

Both of the sub-engine solvers access their respective set
databases through the graph interface; this interface encapsu-
lates the graph data structure of the setsĈ, ρ̂, andD. Figure
2 depicts the structure of the solving engine.

Graph Interface

Structure

Graph

Expression Builder

External Code

Solving

Engine

Expression

Database

Figure 2: Structure of Solving Engine: The arrows represent the
data flow of the solving engine and the expression database. The
graph interface encapsulates the graph structure which handles the
storage and retrieval of the sets, their members, and their succes-
sors. The expression builder converts the input Scheme codeinto
the internal labeled lambda calculus.

Analysis Interface

ENGINE
TRANSFORMATION

Program Flow

Expression Interface

ANALYZER

Figure 3: Structure of Transformation Engine: The arrows repre-
sent the data flow of the transformation engine. The transformation
engine executes after the analyzer completes the control flow and
dependency analysis. This transfer in program flow is represented
by the single arrow labeled “Program Flow.” The transformation
engine accesseŝC, ρ̂, D through the analysis interface. The trans-
formation engine uses this information to convert the code retrieved
through the expression interface.

The transformation engine executes after the analyzer has
finished the control flow and dependency analysis. The
transformation engine accesses the dependency information
through the analysis interface, and accesses the internal code
through the expression interface. The internal code is trans-
formed according to the dependency information. The trans-
formed code, stored in external syntax, is returned from the
transformation engine. Figure 3 depicts the structure of the
transformation engine.

The expression interface was designed to simplify the man-
agement of the expression database. The expression interface
consists of member functions that encapsulate the underly-
ing expression database; this database, in turn, is built from
the external code by the expression builder. The structural
overview of UVARP is presented in Figure 4.

3.3 Testing UVARP
After the design and programming were finished, UVARP
was tested with many programs. The four most significant are
included in this paper to demonstrate the strengths and weak-
nesses of UVARP. All of the test programs werespecifically
engineered to test and illustrate the strengths and weaknesses
of the underlying algorithmsin UVARP.

Test 1 - Bogus Variable
Original Code:
(let ((loop (fun loop (a bogus j)

(if (> j 100) a
(loop a (* bogus 2) (+ 1 j))))))

(loop b 1 1)))))

Processed Code:
(let ((loop (fun loop (a j)

(if (> j 100) a
(loop a (+ 1 j))))))

(loop b 1)))))

The first sample program was specifically engineered to
test whether UVARP would remove a variable which had no
effect on the final computational outcome of the program.
UVARP, after processing Test 1, removed the variable,bo-
gus. The variable was removed from all formal and actual

Transformation Engine

Data Flow

Analyzer Data Flow

Solving Engine Data Flow

Program Flow

Analysis Interface

Engine

Graph Interface

Graph

Structure

ENGINE
TRANSFORMATION

Program Flow

Expression Interface

Expression

Database

Expression Builder

External Code

ANALYZER

Solving

Program Flow

Figure 4: Structure of UVARP: The overall data flow of UVARP is
represented by double arrows. The single arrows represent program
flow.

parameter lists. The program demonstrates UVARP’s ability
to remove variables that are accessed, updated, and passed
between functions, yet do not contribute to the final compu-
tational outcome of the program.

Test 2 - Collapsed Let
Original Code:
(let ((a 2) (b -1) (c 3)

(f (lambda (x y z) (- (* 4 (+ x y)) z))))
((fun looper (w u l) (if (> w 10) w

(looper (+ w u) (* u -4) (* l (* u (f a b c))))))
1 1 1))))

Processed Code:
((fun looper (w u)

(if (> w 10) w
(looper (+ w u) (* u -4)))) 1 1)

The second sample program tested UVARP’s ability to
completely collapse alet expression when all of thelet
expression’s local variables (id-val pairs) have no effecton
the computational outcome of the program. The code for Test
2 presented UVARP with alet expression in which all of the
local variables were superfluous. The entirelet construction
was removed along with all instances of the local variables.

Test 3 - Inadvertent Removal of an Infinite Loop
Original Code:
(let ((loop (fun loopa (a bogus j)

(if (> j 100) a
(loopa (+ a j) (infloop bogus) (+ j 1)))))

(infloop (fun infloopa (x) (infloopa (+ x 1)))))
(loop a 1 1))))

Processed Code:
(let ([loop (fun loopa (a j)

(if (> j 100) a (loopa (+ a j) (+ j 1))))])

(loop a 1))

The third sample program originated from Wand and
Siveroni’s paper on useless variable elimination (Wand and
Siveroni, 1999). This problem illustrates a weakness in
UVARP’s handling of non-termination. The program makes
a call to an infinite loop which has no effect on the final com-
putational outcome of the program. UVARP removed the call
to the infinite loop. Test 3 reveals an inherent problem in
the algorithm. UVARP, when it removes the useless variable
bogus, eliminates the call to the functioninfloop, thus re-
moving the call to an infinite loop and therefore changing the
behavior of the program.4

Although the removal of an infinite loop may seem advan-
tageous, this drastic change in program behavior is an unac-
ceptable byproduct of UVARP because the algorithm could
create unperceived side effects. One solution would be an ex-
tension to the Dependency Analysis that deems any variable
useful that contributes to the non-termination of a program.
Another solution, though less robust and possibly detrimental
to the execution speed, would be to preserve variables whose
values contribute to any recursive function.

Test 4 - Constant Value
Original Code (same as Processed Code):
(let ((a 2) (b 24) (f (lambda (x y) (+ x y))))

((lambda (i j k) (f (+ i (f a b)) (+ j k))) 1 2 3))

The fourth sample program illustrates UVARP’s inability
to remove variables with constant values. The function,f ,
when called with the variablesa andb, will always return 26.
From this specific call site, the functionf is useless; the con-
stant 26 can be inserted instead of the function call. UVARP
returned an identical code to the input code, unable to identify
any superfluous variables.

In Test 4, the limitations of 0CFA are revealed. In Test 4,
there are two sites from which the functionf is called. In first
site,(f (+ i (...)) (+ j k)), the functionf relies on both of its
actual parameters because these arguments are not constant.
However, the second call site off , (f a b), will always return
a constant, 26, unlessa or b are modified. Therefore,(f a b)
could be replaced with 26. The useless variables(f a b), a,
andb were not removed because 0CFA ignores the calling site
when it assess the judgement,(Σ, l) |= (Ĉ, ρ̂), for functions.

4 Further Research
UVARP was able to remove the useless variables in the first
three test cases but failed to optimize the fourth test case.
UVARP finds variables that have no computational effect
throughout the programand removes the occurrences of these
variable within the program. UVARP was unable to remove
the useless variables from Test 4 because these variables were
not useless to the entire program; the first call site required
both its arguments, whereas the second call site could be re-
placed by a constant. Therefore, UVARP can not remove
intertwined useless variables, variables whose values con-
tribute to the final computational output yet have only a con-
stant effect or finite set of effects where a simple assignment
would replace the variable.

4First observed by Wand and Siveroni (1999).

0CFA can not recognize intertwined useless variables be-
cause 0CFA neglects function call sites. First-order control
flow analysis (1CFA), an extension of 0CFA, generates a set
Ĉ andρ̂ for each possible call site instead of a singleĈ and
ρ̂ for the entire program (Nielson and Nielson, 1997). Ac-
cordingly, 2CFA keeps track of âC and ρ̂ for each call site
that may call every other possible call site (Nielson and Niel-
son, 1997). This process can be repeated infinitely. This is
known as Nielson and Nielson’s infinitary control flow analy-
sis (Nielson and Nielson, 1997). Infinitary control flow anal-
ysis would provide an adequate environment for developing
an algorithm that could remove intertwined variables because
it evaluates every call site independent of other call sites. This
extension to the useless variable elimination algorithm could
provide a dramatic increase in execution speed.

5 Conclusion
UVARP reveals only a glimpse of the capabilities of high-
level optimizing compilers. The design, programming, and
testing of UVARP marks the first implementation of Wand
and Siveroni’s useless variable elimination algorithm. Itcan
be hypothesized that an implementation of infinitary con-
trol flow analysis will increase the optimizing capabilities of
UVARP.

6 Acknowledgments
I would like to thank Mitchell Wand of Northeastern Univer-
sity for the time he devoted to me and this project. I would
also like to thank Igor Siveroni for his assistance. My thanks
to Ramesh Johari, Justin Bernold, and the other tutors at the
Research Science Institute for their assistance in revisions.
And finally, I would like to thank the Center for Excellence
in Education, the Research Science Institute, and Mrs. Di-
Gennaro for providing this research opportunity.

References
S. S. Muchnick. Advanced Compiler Design and Implementation.

Morgan Kaufmann Publishers, 1997.

F. Nielson and H. R. Nielson. Infinitary control flow analysis: a col-
lecting semantics for closure analysis. InProceedings 24th An-
nual ACM Symposium on Principles of Programming Languages,
pages 332–345, January 1997.

O. Shivers. Control-Flow Analysis of Higher-Order Languages.
PhD thesis, Carnegie-Mellon University, May 1991.

M. Wand. Personal communication, July 1998.

M. Wand and I. Siveroni. Constraint systems for useless vari-
able elimination. InPOPL ’99: Proceedings of the 26th ACM
SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 291–302, New York, NY, USA, 1999. ACM
Press. ISBN 1-58113-095-3.

A Control Flow Theory
For any function,fn, labeled l and its body labeledl′,
(Σ, l) |= (Ĉ, ρ̂) when(Σ, l′) |= (Ĉ, ρ̂) and l ∈ Ĉ(l). Re-
cursive functions,fun localname, are identical except for
an additional relation:l ∈ ρ̂(localname).

Primitive functions5 labeled l of the form (gl0tl11 ...tlnn)

are consistently described by(Ĉ, ρ̂) when their bodies,
tl11 , ..., tlnn , are consistently described by(Ĉ, ρ̂). Thus,
(Σ, li) |= (Ĉ, ρ̂), i = 1, ..., n.
If expressions of the form(if tl00 then tl11 else tl22) la-

beledl, wheretlnn represents a term labeledn, are consistently
described by(Ĉ, ρ̂) when(Σ, li) |= (Ĉ, ρ̂), i = 1, 2, 3 and
both possible results of theif expression,̂C(l1) andĈ(l2),
are possible results for the entire expressionl. Therefore,
Ĉ(l1) ∪ Ĉ(l2) ⊆ Ĉ(l) must be true for(Σ, l) |= (Ĉ, ρ̂) to
be true.

For anylet expression labeledl of the form (let x =

tl11 in tl22), (Σ, l) |= (Ĉ, ρ̂) when(Σ, li) |= (Ĉ, ρ̂), i = 1, 2.
Furthermore, every possible value fort1 becomes a possible
value forx, thusĈ(l1) ⊆ ρ̂(x). Finally, every possible value
for the body,t2, is a possible value for the entirelet expres-
sion, thusĈ(l2) ⊆ Ĉ(l).

The last syntactical representation is theapp labeled l

in the form (tl00 tl11 ...tlnn). Each sub-expression,t0...tn,
must be consistently described by(Ĉ, ρ̂). Furthermore,
for every memberl′ of Ĉ(l0), where Σ(l′) is either
(fn (x1...xn) (body

lf
f) or (fun y (x1...xn) (body

lf
f), the fol-

lowing relationships are built:

Ĉ(li) ⊆ ρ̂(xi), i = 1, ..., n

Ĉ(lf) ⊆ Ĉ(l)

.

B Dependency Analysis
For every function fn labeled l of the form
(fn (x1 ...xn) tl00), (Σ, l) |= (Ĉ, ρ̂,D) when
Σ(l0) |= (Ĉ, ρ̂,D). Since every variable useful to the
body except those passed as formal parameters is also useful
to the entire function,D(l0) − {x1, ..., xn} ⊆ D(l).

Similarly, the recursive functionfun labeledl of the form
(fun localname (x1...xn) tl00) is consistently described by
the (Ĉ, ρ̂,D) when, similar to thefn expression, the body,
tl00 , is consistently described by(Ĉ, ρ̂,D). In addition, all
useful variables in the body except those passed as formal
parameters to thefun expression are also useful to the en-
tire expression. However, thelocalname variable is useless
to the computational value of the entire expression. Thus,
D(l0) − {localname, x1, ..., xn} ⊆ D(l).

For every primitive expression labeledl and in the form
(gl0 tl11 ...tlnn), (Σ, l) |= (Ĉ, ρ̂,D) when(Σ, li) |= (Ĉ, ρ̂,D)∧
D(li) ⊆ D(l), i = 1, ..., n.

For if expressions labeled l in the form
(if tl00 then tl11 else tl22), Σ(li) |= (Ĉ, ρ̂,D) when
all terms, ti, i = 0, 1, 2, are consistently described by
(Ĉ, ρ̂,D). Since the outcome of theif expression is
not known beforehand, all of the variables that are useful

5Primitive functions are undefined functions that require the val-
ues of all their formal parameters.

in all the terms are also useful to the entire expression.
Thus, D(l0) ∪ D(l1) ∪ D(l2) ⊆ D(l) must be true for
Σ(li) |= (Ĉ, ρ̂,D) to be true.

For let expressions labeledl in the form (let x =

tl11 in tl22), the judgment is true whenΣ(li) |= (Ĉ, ρ̂,D)
wherei = 1, 2. Furthermore, every useful variable in the
body exceptx is possibly useful to the entire expression.
Thus,D(l2) − x ⊆ D(l). And finally, if x is possibly useful
in the body, then all the useful variables in the expression of
x = tl11 , are possible values for the entire expression. Thus,
x ∈ D(l2) ⇒ D(l1) ⊆ D(l).

As observed by Wand and Siveroni, if a closure that flows
to an application site relies on itsi-th parameter, then all
closures must also rely on theiri-th parameters Wand and
Siveroni (1999). These extra conditions can be met by satis-
fying the following condition:

l′, l′′ ∈ Ĉ(l) ⇒ DFormals(D,Σ)(l
′) = DFormals(D,Σ)(l

′′)

where Ĉ(l) is the operator of the application site, and
DFormals(D,Σ)(l

′) are the useful formal parameters for the
term labeledl′ with respect toD andΣ.

Therefore for any application site labeledl of the form
(tl00 tl11 ...tlnn) is consistently described by(Ĉ, ρ̂,D) when, for
all the site’s operandstl11 , ..., tlnn , (Σ, li) |= (Ĉ, ρ̂,D). Fur-
thermore, since all useful variables to the operator are useful
variables to the entire expression,D(l0) ⊆ D(l). Finally,
for every closurel′ that may flow to that site, in the form
of (fn (x1 ...xn) t

lbody

body) or (fun x (x1 ...xn) t
lbody

body), every
useful variable totbody is also useful to the application site.
Therefore:

l′ ∈ Ĉ(l0) ∧ xi ∈ D(lbody) ⇒ D(li) ⊆ D(l), i = 1, ..., n

To force the dependency analysis to maintain the condition,

l′, l′′ ∈ Ĉ(l) ⇒ DFormals(D,Σ)(l
′) = DFormals(D,Σ)(l

′′)

the following condition is added: For alll′′ where,

Σ(l′′) = (fn (y1 ...yn) t
lbody′

body′)∨ (fun y (y1, . . . , yn) t
lbody′

body′),

andl′, l′′ ∈ Ĉ(l0), useful variables tolbody are forced to be
useful forlbody′ .

∀l′′ : l′, l′′ ∈ Ĉ(l0) ∧ xi ∈ D(lbody)

⇒ yi ∈ D(lbody′), i = 1, . . . , n.

