#### Information-Theoretic Generalization Bounds for SGLD via Data-Dependent Estimates

Jeffrey NEGREA Mahdi HAGHIFAM Gintarė Karolina DŽIUGAITĖ Ashish KHISTI Daniel M. ROY

### Stochastic Gradient Langevin Dynamics (SGLD)

Let  $S_0, S_1, S_2, \ldots$  be independent random subsets of S of size  $b_0, b_1, \ldots$ .

Raginsky, Rakhlin, Telgarsky 17 gave nonasymptotic risk bounds for SGLD:

$$W_{t+1} = W_t - \eta_t \nabla \tilde{\mathcal{L}}_{\mathcal{S}_t}(W_t) + \sqrt{2\eta_t/\beta_t} \, \varepsilon_t.$$

where

- ►  $\varepsilon_t \sim \mathcal{N}(0, \mathbb{I}_d)$  i.i.d.,
- $\eta_t$  is learning rate,
- $\triangleright \beta_t$  is inverse temperature,
- $\blacktriangleright \tilde{L}_{S}(w) = \frac{1}{n} \sum_{i=1}^{n} \tilde{\ell}(w, z_{i}).$

### Stochastic Gradient Langevin Dynamics (SGLD)

Let  $S_0, S_1, S_2, \ldots$  be independent random subsets of S of size  $b_0, b_1, \ldots$ .

Raginsky, Rakhlin, Telgarsky 17 gave nonasymptotic risk bounds for SGLD:

$$W_{t+1} = W_t - \eta_t \nabla \tilde{\mathcal{L}}_{\mathcal{S}_t}(W_t) + \sqrt{2\eta_t/\beta_t} \, \varepsilon_t.$$

where

- ►  $\varepsilon_t \sim \mathcal{N}(0, \mathbb{I}_d)$  i.i.d.,
- ▶  $\eta_t$  is learning rate,
- $\blacktriangleright \beta_t$  is inverse temperature,
- $\blacktriangleright \tilde{L}_{S}(w) = \frac{1}{n} \sum_{i=1}^{n} \tilde{\ell}(w, z_{i}).$



### Stochastic Gradient Langevin Dynamics (SGLD)

Let  $S_0, S_1, S_2, \ldots$  be independent random subsets of S of size  $b_0, b_1, \ldots$ .

Raginsky, Rakhlin, Telgarsky 17 gave nonasymptotic risk bounds for SGLD:

$$W_{t+1} = W_t - \eta_t \nabla \tilde{\mathcal{L}}_{\mathcal{S}_t}(W_t) + \sqrt{2\eta_t/\beta_t} \, \varepsilon_t.$$

where

- $\blacktriangleright \ arepsilon_t \sim \mathcal{N}(0,\mathbb{I}_d)$  i.i.d.,
- $\eta_t$  is learning rate,
- $\blacktriangleright \beta_t$  is inverse temperature,
- $\blacktriangleright \tilde{L}_{S}(w) = \frac{1}{n} \sum_{i=1}^{n} \tilde{\ell}(w, z_{i}).$

This talk: building on sequential analysis of Pensia, Jog, and Loh (2017).

Let  $S = (Z_1, \ldots, Z_n) \sim \mathcal{D}^n$  and W be learned weights (i.e., a random element in  $\mathbb{R}^d$ ).

 $\operatorname{EGE}(W,S) = \mathbb{E}[L_{\mathcal{D}}(W) - L_{S}(W)]$ 

Suppose  $\ell(Z_1, w)$  is  $\sigma$ -sub-Gaussian for every  $w \in \mathbb{R}^d$ .

Theorem (XR17, RZ15). 
$$|EGE(W, S)| \leq \sqrt{2\sigma^2 \frac{I(W; S)}{|S|}}$$
.

Let  $S = (Z_1, \ldots, Z_n) \sim \mathcal{D}^n$  and W be learned weights (i.e., a random element in  $\mathbb{R}^d$ ).

 $\operatorname{EGE}(W,S) = \mathbb{E}[L_{\mathcal{D}}(W) - L_{S}(W)]$ 

Suppose  $\ell(Z_1, w)$  is  $\sigma$ -sub-Gaussian for every  $w \in \mathbb{R}^d$ .

**Theorem (XR17, RZ15).** 
$$|EGE(W, S)| \le \sqrt{2\sigma^2 \frac{I(W; S)}{|S|}}$$
.

Does this theorem "explain" SGLD generalization?

Let  $S = (Z_1, \ldots, Z_n) \sim \mathcal{D}^n$  and W be learned weights (i.e., a random element in  $\mathbb{R}^d$ ).

 $\operatorname{EGE}(W,S) = \mathbb{E}[L_{\mathcal{D}}(W) - L_{S}(W)]$ 

Suppose  $\ell(Z_1, w)$  is  $\sigma$ -sub-Gaussian for every  $w \in \mathbb{R}^d$ . Let  $Q_T(S) = \mathbb{P}^S[W_T]$  and  $P_T = \mathbb{P}[W_T]$ .

Theorem (XR17, RZ15). 
$$|EGE(W, S)| \le \sqrt{2\sigma^2 \frac{I(W; S)}{|S|}}$$
.

Does this theorem "explain" SGLD generalization?

Let  $S = (Z_1, \ldots, Z_n) \sim \mathcal{D}^n$  and W be learned weights (i.e., a random element in  $\mathbb{R}^d$ ).

 $\operatorname{EGE}(W,S) = \mathbb{E}[L_{\mathcal{D}}(W) - L_{S}(W)]$ 

Suppose  $\ell(Z_1, w)$  is  $\sigma$ -sub-Gaussian for every  $w \in \mathbb{R}^d$ . Let  $Q_T(S) = \mathbb{P}^S[W_T]$  and  $P_T = \mathbb{P}[W_T]$ .

**Theorem (XR17, RZ15).** 
$$|\text{EGE}(W, S)| \leq \sqrt{2\sigma^2 \frac{I(W; S)}{|S|}} = \sqrt{2\sigma^2 \frac{\mathbb{E}[\text{KL}(Q_T(S)||P_T)]}{|S|}}.$$

▶ Does this theorem "explain" SGLD generalization?

Let  $S = (Z_1, \ldots, Z_n) \sim \mathcal{D}^n$  and W be learned weights (i.e., a random element in  $\mathbb{R}^d$ ).

 $\operatorname{EGE}(W,S) = \mathbb{E}[L_{\mathcal{D}}(W) - L_{S}(W)]$ 

Suppose  $\ell(Z_1, w)$  is  $\sigma$ -sub-Gaussian for every  $w \in \mathbb{R}^d$ . Let  $Q_T(S) = \mathbb{P}^S[W_T]$  and  $P_T = \mathbb{P}[W_T]$ .

**Theorem (XR17, RZ15).** 
$$|EGE(W, S)| \le \sqrt{2\sigma^2 \frac{I(W; S)}{|S|}} = \sqrt{2\sigma^2 \frac{\mathbb{E}[KL(Q_T(S)||P_T)]}{|S|}}.$$

- Does this theorem "explain" SGLD generalization?
- ▶ Proof (via Donsker–Varadhan) suggests which procedures enjoy tightest bounds.

Let  $S = (Z_1, \ldots, Z_n) \sim \mathcal{D}^n$  and W be learned weights (i.e., a random element in  $\mathbb{R}^d$ ).

 $\operatorname{EGE}(W,S) = \mathbb{E}[L_{\mathcal{D}}(W) - L_{S}(W)]$ 

Suppose  $\ell(Z_1, w)$  is  $\sigma$ -sub-Gaussian for every  $w \in \mathbb{R}^d$ . Let  $Q_T(S) = \mathbb{P}^S[W_T]$  and  $P_T = \mathbb{P}[W_T]$ .

**Theorem (XR17, RZ15).** 
$$|EGE(W, S)| \le \sqrt{2\sigma^2 \frac{I(W; S)}{|S|}} = \sqrt{2\sigma^2 \frac{\mathbb{E}[KL(Q_T(S)||P_T)]}{|S|}}.$$

- Does this theorem "explain" SGLD generalization?
- ▶ Proof (via Donsker–Varadhan) suggests which procedures enjoy tightest bounds.
- Statistical barrier: I(W; S) depends on unknown  $\mathcal{D}$ .

Let  $S = (Z_1, \ldots, Z_n) \sim \mathcal{D}^n$  and W be learned weights (i.e., a random element in  $\mathbb{R}^d$ ).

 $\operatorname{EGE}(W,S) = \mathbb{E}[L_{\mathcal{D}}(W) - L_{S}(W)]$ 

Suppose  $\ell(Z_1, w)$  is  $\sigma$ -sub-Gaussian for every  $w \in \mathbb{R}^d$ . Let  $Q_T(S) = \mathbb{P}^S[W_T]$  and  $P_T = \mathbb{P}[W_T]$ .

**Theorem (XR17, RZ15).** 
$$|EGE(W, S)| \le \sqrt{2\sigma^2 \frac{I(W; S)}{|S|}} = \sqrt{2\sigma^2 \frac{\mathbb{E}[KL(Q_T(S)||P_T)]}{|S|}}.$$

- Does this theorem "explain" SGLD generalization?
- ▶ Proof (via Donsker–Varadhan) suggests which procedures enjoy tightest bounds.
- Statistical barrier: I(W; S) depends on unknown  $\mathcal{D}$ .
- Computational barrier: even if  $\mathcal{D}$  were known,  $\mathbb{P}[W]$  often intractable.

Let  $S_0, S_1, S_2, \ldots$  be random minibatches of S. The iterates  $W_0, W_1, \ldots, W_T$  of SGLD satisfy  $W_{i+1} = W_i - \eta_i \nabla \tilde{L}_{S_i}(W_i) + \sqrt{2\eta_i/\beta_i} \varepsilon_i.$ 

.

Theorem (XR17, RZ15). 
$$|EGE(W_T, S)| \leq \sqrt{2\sigma^2 \frac{I(S; W_T)}{|S|}}$$

Let  $S_0, S_1, S_2, \ldots$  be random minibatches of S. The iterates  $W_0, W_1, \ldots, W_T$  of SGLD satisfy  $W_{i+1} = W_i - \eta_i \nabla \tilde{L}_{S_i}(W_i) + \sqrt{2\eta_i/\beta_i} \varepsilon_i.$ 

**Theorem (XR17, RZ15).** 
$$|EGE(W_T, S)| \le \sqrt{2\sigma^2 \frac{I(S; W_T)}{|S|}}$$



Let  $S_0, S_1, S_2, \ldots$  be random minibatches of S. The iterates  $W_0, W_1, \ldots, W_T$  of SGLD satisfy  $W_{i+1} = W_i - \eta_i \nabla \tilde{L}_{S_i}(W_i) + \sqrt{2\eta_i/\beta_i} \varepsilon_i.$ 

.

Theorem (XR17, RZ15). 
$$|EGE(W_T, S)| \leq \sqrt{2\sigma^2 \frac{I(S; W_T)}{|S|}}$$

Even if  $\mathcal{D}$  were known,  $I(W_T; S)$  involves intractable marginal  $\mathbb{P}W_T$ .

 $[\mathsf{PJL18}] \qquad \mathrm{I}(S; W_T) \leq \mathrm{I}(S; W_{1:T})$ 

Let  $S_0, S_1, S_2, \ldots$  be random minibatches of S. The iterates  $W_0, W_1, \ldots, W_T$  of SGLD satisfy  $W_{i+1} = W_i - \eta_i \nabla \tilde{L}_{S_i}(W_i) + \sqrt{2\eta_i/\beta_i} \varepsilon_i.$ 

.

Theorem (XR17, RZ15). 
$$|\text{EGE}(W_{\mathcal{T}}, S)| \leq \sqrt{2\sigma^2 \frac{I(S; W_{\mathcal{T}})}{|S|}}$$

$$\begin{aligned} [\mathsf{PJL18}] & & \mathrm{I}(S; \, \mathcal{W}_{\mathcal{T}}) \leq \mathrm{I}(S; \, \mathcal{W}_{1:\mathcal{T}}) \\ & & \leq \mathrm{I}(S_0; \, \mathcal{W}_1) + \mathrm{I}(S_1; \, \mathcal{W}_2 | \mathcal{W}_1) \\ & & + \mathrm{I}(S_2; \, \mathcal{W}_3 | \mathcal{W}_1, \, \mathcal{W}_2) + \dots + \mathrm{I}(S_{\mathcal{T}-1}; \, \mathcal{W}_{\mathcal{T}} | \mathcal{W}_{1:\mathcal{T}-1}) \end{aligned}$$

Let  $S_0, S_1, S_2, \ldots$  be random minibatches of S. The iterates  $W_0, W_1, \ldots, W_T$  of SGLD satisfy  $W_{i+1} = W_i - \eta_i \nabla \tilde{L}_{S_i}(W_i) + \sqrt{2\eta_i/\beta_i} \varepsilon_i.$ 

.

Theorem (XR17, RZ15). 
$$|EGE(W_{\mathcal{T}}, S)| \leq \sqrt{2\sigma^2 \frac{I(S; W_{\mathcal{T}})}{|S|}}$$

$$\begin{aligned} [\mathsf{PJL18}] & & \mathrm{I}(S; \, \mathcal{W}_{\mathcal{T}}) \leq \mathrm{I}(S; \, \mathcal{W}_{1:\mathcal{T}}) \\ & & \leq \mathrm{I}(S_0; \, \mathcal{W}_1) + \mathrm{I}(S_1; \, \mathcal{W}_2 | \mathcal{W}_1) \\ & & + \mathrm{I}(S_2; \, \mathcal{W}_3 | \mathcal{W}_1, \, \mathcal{W}_2) + \dots + \mathrm{I}(S_{\mathcal{T}-1}; \, \mathcal{W}_{\mathcal{T}} | \mathcal{W}_{1:\mathcal{T}-1}) \end{aligned}$$

$$I(S_{T-1}; W_T | W_{1:T-1}) \leq \frac{d}{2} \ln \left( 1 + \frac{\eta_i \beta_i L^2}{2d} \right) \leq \eta_i \beta_i L^2 / 4 \quad \text{where} \quad \sup_i \| \nabla \tilde{\mathcal{L}}_{S_i}(W_i) \|_2 \leq L \text{ a.s.}$$

Let  $S_0, S_1, S_2, \ldots$  be random minibatches of S. The iterates  $W_0, W_1, \ldots, W_T$  of SGLD satisfy  $W_{i+1} = W_i - \eta_i \nabla \tilde{L}_{S_i}(W_i) + \sqrt{2\eta_i/\beta_i} \varepsilon_i.$ 

**Theorem (XR17, RZ15).** 
$$|\text{EGE}(W_T, S)| \leq \sqrt{2\sigma^2 \frac{I(S; W_T)}{|S|}} \stackrel{[PJL18]}{\leq} \sqrt{\frac{\sigma^2}{2n} \sum_{i=1}^T \eta_i \beta_i L^2}.$$

$$\begin{aligned} [\mathsf{PJL18}] & & \mathrm{I}(S; \, \mathcal{W}_{\mathcal{T}}) \leq \mathrm{I}(S; \, \mathcal{W}_{1:\mathcal{T}}) \\ & & \leq \mathrm{I}(S_0; \, \mathcal{W}_1) + \mathrm{I}(S_1; \, \mathcal{W}_2 | \mathcal{W}_1) \\ & & + \mathrm{I}(S_2; \, \mathcal{W}_3 | \mathcal{W}_1, \, \mathcal{W}_2) + \dots + \mathrm{I}(S_{\mathcal{T}-1}; \, \mathcal{W}_{\mathcal{T}} | \mathcal{W}_{1:\mathcal{T}-1}) \end{aligned}$$

$$I(S_{T-1}; W_T | W_{1:T-1}) \leq \frac{d}{2} \ln \left( 1 + \frac{\eta_i \beta_i L^2}{2d} \right) \leq \eta_i \beta_i L^2 / 4 \quad \text{where} \quad \sup_i \| \nabla \tilde{\mathcal{L}}_{S_i}(W_i) \|_2 \leq L \text{ a.s.}$$

**Theorem (XR17, RZ15).** 
$$|EGE(W, S)| \le \sqrt{2\sigma^2 \frac{I(W; S)}{|S|}}.$$

Theorem (XR17, RZ15). 
$$|EGE(W, S)| \le \sqrt{2\sigma^2 \frac{I(W; S)}{|S|}}.$$

Theorem (RRTWX16, BZV19, NHDKR19).  $|EGE(W, S)| \leq \mathbb{E}\left[\sqrt{2\sigma^2 \frac{I(W; S_J|S_J)}{|S_J|}}\right].$ 

Advances in Neural Information Processing Systems

Theorem (XR17, RZ15). 
$$|EGE(W, S)| \le \sqrt{2\sigma^2 \frac{I(W; S)}{|S|}}.$$

Note  $I(W; S_J | S_J) = \mathbb{E}[I^{S_J}(W; S_J)].$ 

Theorem (RRTWX16, BZV19, NHDKR19).  $|EGE(W, S)| \leq \mathbb{E}\left[\sqrt{2\sigma^2 \frac{I(W; S_J|S_{\overline{J}})}{|S_J|}}\right].$ 

Theorem (XR17, RZ15). 
$$|EGE(W, S)| \le \sqrt{2\sigma^2 \frac{I(W; S)}{|S|}}.$$

Note  $I(W; S_{\overline{J}}|S_J) = \mathbb{E}[I^{S_J}(W; S_{\overline{J}})].$ 

Theorem (NHDKR19).  
$$|EGE(W, S)| \leq \mathbb{E}\left[\sqrt{2\sigma^2 \frac{\mathbb{E}[I^{S_J}(S_{\overline{J}}; W)]}{|S_J|}}\right].$$

Theorem (XR17, RZ15). 
$$|EGE(W, S)| \le \sqrt{2\sigma^2 \frac{I(W; S)}{|S|}}.$$

Note  $I(W; S_{\overline{J}}|S_J) = \mathbb{E}[I^{S_J}(W; S_{\overline{J}})].$ 

Theorem (NHDKR19).  $|EGE(W, S)| \leq \qquad \leq \mathbb{E}\left[\sqrt{2\sigma^2 \frac{\mathbb{E}[I^{S_J}(S_{\overline{J}}; W)]}{|S_J|}}\right].$ 

Advances in Neural Information Processing Systems

**Theorem (XR17, RZ15).** 
$$|EGE(W, S)| \le \sqrt{2\sigma^2 \frac{I(W; S)}{|S|}}.$$

Note  $I(W; S_{\overline{J}}|S_J) = \mathbb{E}[I^{S_J}(W; S_{\overline{J}})].$ 



**Theorem (XR17, RZ15).** 
$$|EGE(W, S)| \le \sqrt{2\sigma^2 \frac{I(W; S)}{|S|}}.$$

Note  $I(W; S_{\overline{J}}|S_J) = \mathbb{E}[I^{S_J}(W; S_{\overline{J}})].$ 

Theorem (NHDKR19). Assuming |J| = 1 and  $\ell \in [0, 1]$ .  $|EGE(W, S)| \le \mathbb{E}\left[\sqrt{I^{S_J}(S_{\overline{J}}; W)/2}\right]$ 

Theorem (XR17, RZ15). 
$$|EGE(W, S)| \leq \sqrt{2\sigma^2 \frac{I(W; S)}{|S|}}.$$

Note  $I(W; S_J|S_J) = \mathbb{E}[I^{S_J}(W; S_{\overline{J}})]$ . Let  $Q(S) = \mathbb{P}^S[W]$  and  $P(S_J) = \mathbb{P}^{S_J}[W]$ . Then  $I^{S_J}(W; S_{\overline{J}}) = \mathbb{E}^{S_J}[KL(Q(S)||P(S_J))]$ .

Theorem (NHDKR19). Assuming |J| = 1 and  $\ell \in [0, 1]$ .  $|EGE(W, S)| \le \mathbb{E}\left[\sqrt{I^{S_J}(S_{\overline{J}}; W)/2}\right]$ 

Theorem (XR17, RZ15). 
$$|EGE(W, S)| \leq \sqrt{2\sigma^2 \frac{I(W; S)}{|S|}}.$$

Note  $I(W; S_J|S_J) = \mathbb{E}[I^{S_J}(W; S_{\overline{J}})]$ . Let  $Q(S) = \mathbb{P}^S[W]$  and  $P(S_J) = \mathbb{P}^{S_J}[W]$ . Then  $I^{S_J}(W; S_{\overline{J}}) = \mathbb{E}^{S_J}[KL(Q(S)||P(S_J))]$ .

Theorem (NHDKR19). Assuming |J| = 1 and  $\ell \in [0, 1]$ .  $|EGE(W, S)| \le \mathbb{E}\left[\sqrt{\mathrm{KL}(Q(S)||P(S_J))/2}\right]$ 

Theorem (XR17, RZ15). 
$$|EGE(W, S)| \leq \sqrt{2\sigma^2 \frac{I(W; S)}{|S|}}.$$

Note  $I(W; S_J|S_J) = \mathbb{E}[I^{S_J}(W; S_J)]$ . Let  $Q(S) = \mathbb{P}^S[W]$  and  $P(S_J) = \mathbb{P}^{S_J}[W]$ . Then  $I^{S_J}(W; S_J) = \mathbb{E}^{S_J}[KL(Q(S)||P(S_J))]$ .

**Theorem (NHDKR19).** Assuming 
$$|J| = 1$$
 and  $\ell \in [0, 1]$ .  
 $|EGE(W, S)| \le \mathbb{E}\left[\sqrt{KL(Q(S)||P(S_J))/2}\right]$  holds for all kernels  $P(\cdot)$ !

### Chain rule for KL

Let  $(W_0, W_1, \ldots, W_T)$  be iterates.

Define  $Q = Q(S) = \mathbb{P}^{S}[W_{0:T}]$ ,  $Q_t = \mathbb{P}^{S}[W_t]$  and  $Q_t = \mathbb{P}^{S,W_{0:t-1}}[W_t]$ .

Let  $P, P_t, P_t$  be arbitrary but depending on  $S_J$  not S.

Assume 
$$P_0 = Q_0$$
. Then  $\operatorname{KL}(Q_T || P_T) \leq \operatorname{KL}(Q || P) = \sum_{t=1}^T \mathbb{E}^{W_{0:t-1}} \operatorname{KL}(Q_t || P_t |).$ 

### Data-dependent priors for full-batch SGLD (i.e., Langevin algorithm)

Let  $S_J$  be a random subset of S, of size m, chosen independently from  $W_0, W_1, \ldots$ . The one-step distribution  $Q_{t|}$  satisfies

$$Q_{t|} = Q_{t|}(S) = \mathcal{N}\left(W_t - \eta_t \nabla \tilde{\mathcal{L}}_S(W_t), \ 2\frac{\eta_t}{\beta_t} \mathbb{I}_d\right).$$

Consider the data-dependent prior, P,

$$P_{t|} = P_{t|}(S_J) \equiv \mathcal{N}\left(W_t - \eta_t \nabla \tilde{L}_{S_J}(W_t), \ 2\frac{\eta_t}{\beta_t} \mathbb{I}_d\right).$$

The one-step KL divergence is then

$$\mathrm{KL}(\boldsymbol{Q}_{t+1}||\boldsymbol{P}_{t+1}|) = \frac{\beta_t \eta_t}{8} \|\xi_{t,J}\|_2^2 \qquad \text{where } \xi_{t,J} = \underbrace{\nabla \tilde{\mathcal{L}}_{\mathcal{S}}(W_t) - \nabla \tilde{\mathcal{L}}_{\mathcal{S}_J}(W_t)}_{\text{"incoherence"}}.$$

$$\xi_{t,i} = \nabla \tilde{L}_{\mathcal{S}}(W_t) - \nabla \tilde{L}_{\mathcal{S} \setminus \{i\}}(W_t)$$

Theorem (NHDKR19).  

$$EGE(W_T, S) \leq \mathbb{E}\sqrt{\frac{\beta n}{16(n-1)^2} \sum_{t=1}^T \eta_t \mathbb{E}^S \left[\frac{1}{n} \sum_{j=1}^n ||\xi_{t,j}||^2\right]}$$
Theorem (MWZZ17).

$$\mathrm{EGE}(W_T, S) \leq \sqrt{\frac{\beta}{n} \sum_{t=1}^T \eta_t \mathbb{E}[\|\nabla \tilde{\mathcal{L}}_S(W_t)\|^2]}$$

### Effect of number of held-out points

MNIST, FC



# Empirical Evaluation



# Empirical Evaluation



|                                 | MNIST with MLP     |                  |                  | MNIST with CNN   |                  |                  |
|---------------------------------|--------------------|------------------|------------------|------------------|------------------|------------------|
|                                 | Epoch 1            | Epoch 2          | Epoch 3          | Epoch 1          | Epoch 2          | Epoch 3          |
| Training Classification Error   | $25.52 \pm 0.08\%$ | $16.17\pm0.04\%$ | $12.38\pm0.02\%$ | $21.89\pm0.21\%$ | $14.07\pm0.14\%$ | $10.78\pm0.10\%$ |
| Test Classification Error       | $25.57 \pm 0.06\%$ | $16.29\pm0.04\%$ | $12.45\pm0.02\%$ | $22.93\pm0.20\%$ | $14.72\pm0.14\%$ | $11.24\pm0.09\%$ |
| Generalization Gap (Mou et al.) | $33.8\pm1.4\%$     | $76.0\pm3.0\%$   | $139.4\pm5.9\%$  | $46.5\pm2.2\%$   | $78.6\pm3.0\%$   | $130.6\pm4.6\%$  |
| Generalization Gap (Our Bound)  | $10.0\pm1.6\%$     | $20.5\pm4.0\%$   | $29.0\pm6.7\%$   | $15.3\pm2.8\%$   | $25.8\pm4.4\%$   | $49.2\pm10.4\%$  |

Mutual information bounds on expected generalization [XR17,RS15]

- Mutual information bounds on expected generalization [XR17,RS15]
- Sequential decomposition of mutual information for SGLD [PJL18,BZV19]

- Mutual information bounds on expected generalization [XR17,RS15]
- Sequential decomposition of mutual information for SGLD [PJL18,BZV19]
- Vacuousness in standard regimes

- Mutual information bounds on expected generalization [XR17,RS15]
- Sequential decomposition of mutual information for SGLD [PJL18,BZV19]
- Vacuousness in standard regimes
- Distribution-dependence via data-dependent priors

- Mutual information bounds on expected generalization [XR17,RS15]
- Sequential decomposition of mutual information for SGLD [PJL18,BZV19]
- Vacuousness in standard regimes
- Distribution-dependence via data-dependent priors
- Loose but nonvacuous bounds possible empirically

- Mutual information bounds on expected generalization [XR17,RS15]
- Sequential decomposition of mutual information for SGLD [PJL18,BZV19]
- Vacuousness in standard regimes
- Distribution-dependence via data-dependent priors
- Loose but nonvacuous bounds possible empirically
- More work needed to understand limits of mutual information based approaches