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Ashish KHISTI University of Toronto

Daniel M. ROY University of Toronto; Vector Institute

Advances in Neural Information Processing Systems



Stochastic Gradient Langevin Dynamics (SGLD)

Let S0,S1,S2, . . . be independent random subsets of S of size b0, b1, . . . .

Raginsky, Rakhlin, Telgarsky 17 gave nonasymptotic risk bounds for SGLD:

Wt+1 = Wt − ηt∇L̃St (Wt) +
√

2ηt/βt εt .

where

I εt ∼ N (0, Id) i.i.d.,

I ηt is learning rate,

I βt is inverse temperature,

I L̃S(w) = 1
n

∑n
i=1

˜̀(w , zi ).
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Let S0,S1,S2, . . . be independent random subsets of S of size b0, b1, . . . .

Raginsky, Rakhlin, Telgarsky 17 gave nonasymptotic risk bounds for SGLD:

Wt+1 = Wt − ηt∇L̃St (Wt) +
√

2ηt/βt εt .

where

I εt ∼ N (0, Id) i.i.d.,

I ηt is learning rate,

I βt is inverse temperature,

I L̃S(w) = 1
n

∑n
i=1

˜̀(w , zi ).

This talk: building on sequential analysis of Pensia, Jog, and Loh (2017).
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Mutual information bound

Let S = (Z1, . . . ,Zn) ∼ Dn and W be learned weights (i.e., a random element in Rd).

EGE(W ,S) = E[LD(W )− LS(W )]

Suppose `(Z1,w) is σ-sub-Gaussian for every w ∈ Rd .

Let QT (S) = PS [WT ] and PT = P[WT ].

Theorem (XR17, RZ15). |EGE(W ,S)| ≤

√
2σ2

I(W ;S)

|S |
.

I Does this theorem “explain” SGLD generalization?

I Proof (via Donsker–Varadhan) suggests which procedures enjoy tightest bounds.

I Statistical barrier: I(W ;S) depends on unknown D.

I Computational barrier: even if D were known, P[W ] often intractable.
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Bounding I(S ;WT ) for SGLD

Let S0,S1,S2, . . . be random minibatches of S . The iterates W0,W1, . . . ,WT of SGLD satisfy

Wi+1 = Wi − ηi∇L̃Si (Wi ) +
√

2ηi/βi εi .

Theorem (XR17, RZ15). |EGE(WT ,S)| ≤

√
2σ2

I(S ;WT )

|S |

[PJL18]

≤

√√√√σ2

2n

T∑
i=1

ηiβiL2

.

Even if D were known, I(WT ;S) involves intractable marginal PWT .
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Even if D were known, I(WT ;S) involves intractable marginal PWT .

[PJL18] I(S ;WT ) ≤ I(S ;W1:T )

≤ I(S0;W1) + I(S1;W2|W1)

+ I(S2;W3|W1,W2) + · · ·+ I(ST−1;WT |W1:T−1)

I(ST−1;WT |W1:T−1) ≤ d

2
ln
(

1 +
ηiβiL

2

2d

)
≤ ηiβiL2/4 where sup

i
‖∇L̃Si (Wi )‖2 ≤ L a.s.
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Mutual information bounds

Theorem (XR17, RZ15). |EGE(W ,S)| ≤

√
2σ2

I(W ;S)

|S |
.

Let J ⊆ [n] = {1, . . . , n} be uniformly distributed subset of size |J| = m ≤ n and J ⊥⊥ (S ,W ).
Let S = (SJ ,SJ̄).

Note I(W ;SJ̄ |SJ) = E[ISJ (W ;SJ̄)].
Let Q(S) = PS [W ] and P(SJ) = PSJ [W ]. Then ISJ (W ;SJ̄) = ESJ [KL(Q(S)||P(SJ))].
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Mutual information bounds

Theorem (XR17, RZ15). |EGE(W ,S)| ≤

√
2σ2

I(W ;S)

|S |
.

Let J ⊆ [n] = {1, . . . , n} be uniformly distributed subset of size |J| = m ≤ n and J ⊥⊥ (S ,W ).
Let S = (SJ ,SJ̄).
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Let Q(S) = PS [W ] and P(SJ) = PSJ [W ]. Then ISJ (W ;SJ̄) = ESJ [KL(Q(S)||P(SJ))].

Theorem (NHDKR19). Assuming |J| = 1 and ` ∈ [0, 1].

|EGE(W ,S)| ≤ E
[√

ISJ (SJ̄ ;W )/2

]
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Chain rule for KL

Let (W0,W1, . . .WT ) be iterates.

Define Q = Q(S) = PS [W0:T ], Qt = PS [Wt ] and Qt| = PS,W0:t−1 [Wt ].

Let P,Pt ,Pt| be arbitrary but depending on SJ not S .

Assume P0 = Q0. Then KL(QT ||PT ) ≤ KL(Q||P) =
T∑
t=1

EW0:t−1KL(Qt|||Pt|).
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Data-dependent priors for full-batch SGLD (i.e., Langevin algorithm)

Let SJ be a random subset of S , of size m, chosen independently from W0,W1, . . . .
The one-step distribution Qt| satisfies

Qt| = Qt|(S) = N
(
Wt − ηt∇L̃S(Wt), 2

ηt
βt

Id
)
.

Consider the data-dependent prior, P,

Pt| = Pt|(SJ) ≡ N
(
Wt − ηt∇L̃SJ

(Wt), 2
ηt
βt

Id
)
.

The one-step KL divergence is then

KL(Qt+1|||Pt+1|) =
βtηt

8
‖ξt,J‖2

2 where ξt,J = ∇L̃S(Wt)−∇L̃SJ
(Wt)︸ ︷︷ ︸

“incoherence”

.
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EGE bounds for SGLD

ξt,i = ∇L̃S(Wt)−∇L̃S\{i}(Wt)

Theorem (NHDKR19).

EGE(WT ,S) ≤ E

√√√√ β n

16(n − 1)2

T∑
t=1

ηtES
[1

n

n∑
j=1

‖ξt,j‖2
]

Theorem (MWZZ17).

EGE(WT ,S) ≤

√√√√β

n

T∑
t=1

ηtE[‖∇L̃S(Wt)‖2]
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Effect of number of held-out points

MNIST, FC

1 3 5 7 9 11 13 15
Training epochs

10 2

100

102

104

106

|| t||2, #heldout points=1
|| Rt||2, #heldout points=1
|| t||2, #heldout points=1000
|| Rt||2, #heldout points=1000
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Empirical Evaluation

MNIST, CNN Fashion-MNIST, CNN CIFAR10, CNN

1 3 5 7 9 11 13 15
Training epochs

10 3

10 2

10 1

100

101

|| t||2

|| Rt||2

1 3 5 7 9 11 13 15 17 19 21 23 25
Training epochs

10 3

10 2

10 1

100

101

102

|| t||2

|| Rt||2

1 5 9 13 17 21 25 29 33 37 41 45 49
Training epochs

10 1

100

101

102

|| t||2

|| Rt||2

MNIST with MLP MNIST with CNN
Epoch 1 Epoch 2 Epoch 3 Epoch 1 Epoch 2 Epoch 3

Training Classification Error 25.52± 0.08% 16.17± 0.04% 12.38± 0.02% 21.89± 0.21% 14.07± 0.14% 10.78± 0.10%
Test Classification Error 25.57± 0.06% 16.29± 0.04% 12.45± 0.02% 22.93± 0.20% 14.72± 0.14% 11.24± 0.09%

Generalization Gap (Mou et al.) 33.8± 1.4% 76.0± 3.0% 139.4± 5.9% 46.5± 2.2% 78.6± 3.0% 130.6± 4.6%
Generalization Gap (Our Bound) 10.0± 1.6% 20.5± 4.0% 29.0± 6.7% 15.3± 2.8% 25.8± 4.4% 49.2± 10.4%
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Conclusion

I Mutual information bounds on expected generalization [XR17,RS15]

I Sequential decomposition of mutual information for SGLD [PJL18,BZV19]

I Vacuousness in standard regimes

I Distribution-dependence via data-dependent priors

I Loose but nonvacuous bounds possible empirically

I More work needed to understand limits of mutual information based approaches
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