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Stochastic Gradient Langevin Dynamics (SGLD)

Let Sp, S1,5,,... be independent random subsets of S of size by, by, .. ..

Raginsky, Rakhlin, Telgarsky 17 gave nonasymptotic risk bounds for SGLD:
Wir = We — ntVZSt(Wt) +/2n:/Br €.

where
> ¢ ~N(0,1,) i.id.,
» 1, is learning rate,
» (; is inverse temperature,
> Ls(w) =150 {(w,z).
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Stochastic Gradient Langevin Dynamics (SGLD)

Let Sp, S1,5,,... be independent random subsets of S of size by, by, .. ..

Raginsky, Rakhlin, Telgarsky 17 gave nonasymptotic risk bounds for SGLD:
Wir = We — ntVZSt(Wt) +/2n:/Br €.

where
> ¢ ~N(0,1,) i.id.,
» 1, is learning rate,

» (; is inverse temperature,
> Ls(w) =137 U(w, z).

This talk: building on sequential analysis of Pensia, Jog, and Loh (2017).
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Mutual information bound

Let S =(Z,...,Z,) ~D" and W be learned weights (i.e., a random element in RY).
EGE(W, §) = E[Lp(W) — Ls(W)]

Suppose /(Z;, w) is o-sub-Gaussian for every w € R9.

I(W;S)
sl

Theorem (XR17, RZ15). |EGE(W,S)| < /202
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Mutual information bound

Let S =(Z,...,Z,) ~D" and W be learned weights (i.e., a random element in RY).
EGE(W, §) = E[Lp(W) — Ls(W)]

Suppose £(Zy, w) is o-sub-Gaussian for every w € R?. Let Q7(S) = P°[W+] and P+ = P[W+].

Theorem (XR17, RZ15). |EGE(W,S)| < \/2021('/‘;;|5) = \/202E[KL(Q|TS(|5)|PT)] .

» Does this theorem “explain” SGLD generalization?
» Proof (via Donsker—Varadhan) suggests which procedures enjoy tightest bounds.
> Statistical barrier: I(W; S) depends on unknown D.

» Computational barrier: even if D were known, P[W] often intractable.
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Bounding I(S; Wr) for SGLD

Let So, 51,55, ... be random minibatches of S. The iterates Wy, Wy, ..., W7t of SGLD satisfy
Wisr = W, — VL5, (W) + v/2ni/Bi ei.

Theorem (XR17, RZ15). |EGE(Wr,S)| < 202I(S|;SWT)

Even if D were known, I(Wr; S) involves intractable marginal PWr.

Advances in Neural Information Processing Systems



Bounding I(S; Wr) for SGLD

Let So, 51,55, ... be random minibatches of S. The iterates Wy, Wy, ..., W7t of SGLD satisfy
Wisr = W, — VL5, (W) + v/2ni/Bi ei.

Theorem (XR17, RZ15). |EGE(Wr,S)| < 202I(S|;SWT)

Even if D were known, I(Wr; S) involves intractable marginal PWr.

Advances in Neural Information Processing Systems



Bounding I(S; Wr) for SGLD

Let So, 51,55, ... be random minibatches of S. The iterates Wy, Wy, ..., W7t of SGLD satisfy
Wisr = W, — VL5, (W) + v/2ni/Bi ei.
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Mutual information bounds

I(W;S)
Bl

Theorem (XR17, RZ15). |EGE(W,S)| < /202

Let J C [n] ={1,..., n} be uniformly distributed subset of size |J| = m < nand J 1 (S, W).
Let S = (SJ,S]).
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Mutual information bounds

,LI(W;S)

Theorem (XR17, RZ15). |[EGE(W,S)| < /20 G

Let J C [n] ={1,..., n} be uniformly distributed subset of size |J| = m < nand J 1 (S, W).
Let S = (SJ,S]).

Theorem (RRTWX16, BZV19, NHDKR19).

IEGE(W, S)| < E[ 202I(W;5J|5J')].
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Mutual information bounds

,LI(W;S)

Theorem (XR17, RZ15). |[EGE(W,S)| < /20 G

Let J C [n] ={1,..., n} be uniformly distributed subset of size |J| = m < nand J 1 (S, W).
Let S = (SJ,S]).

Note I(W; S7|S,) = E[I>(W; S7)].

Theorem (RRTWX16, BZV19, NHDKR19).

IEGE(W, S)| < E[ 252 I(Wi54157)
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Mutual information bounds

I(W;S)

Theorem (XR17, RZ15). |EGE(W,S)| < /202 5

Let J C [n] ={1,..., n} be uniformly distributed subset of size |J| = m < nand J 1 (S, W).
Let S = (SJ,S]).

Note I(W; S7|S,) = E[I>(W; S7)].

Theorem (NHDKR19).

|[EGE(W, S)| < E[\/zg

5 ]E[ISJ (S7; W)
1S
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Mutual information bounds

I(W;S)

Theorem (XR17, RZ15). |EGE(W,S)| < /202 5

Let J C [n] ={1,..., n} be uniformly distributed subset of size |J| = m < nand J 1 (S, W).
Let S = (SJ,S]).

Note I(W; S7|S,) = E[I>(W; S7)].
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Mutual information bounds

,LI(W;S)

Theorem (XR17, RZ15). |[EGE(W,S)| < /20 G

Let J C [n] ={1,..., n} be uniformly distributed subset of size |J| = m < nand J 1 (S, W).
Let S = (SJ,S]).

Note I(W; S7|S,) = E[I>(W; S7)].

Theorem (NHDKR19).

I5:(S5, W) E[15:(S7; W)]
[EGE(W, S)| SE[ 2025J|} g]E{\/z(ﬂ'SJI ,
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Mutual information bounds

,LI(W;S)

Theorem (XR17, RZ15). |[EGE(W,S)| < /20 G

Let J C [n] ={1,..., n} be uniformly distributed subset of size |J| = m < nand J 1 (S, W).
Let S = (SJ,S]).

Note I(W; S7|S,) = E[I>(W; S7)].

Theorem (NHDKR19). Assuming |J| =1 and ¢ € [0, 1].

EGE(W, 5)| <E[\/i5(57,w)2 ]
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Mutual information bounds

,LI(W;S)

Theorem (XR17, RZ15). |[EGE(W,S)| < /20 G

Let J C [n] ={1,..., n} be uniformly distributed subset of size |J| = m < nand J 1 (S, W).
Let S = (SJ,S]).

Note I(W; S7|S,) = E[I>(W; S7)].
Let Q(S) = P°[W] and P(S,)) = P>[W]. Then I3(W; S7) = E>/[KL(Q(S)||P(S5)))].

Theorem (NHDKR19). Assuming |J| =1 and ¢ € [0, 1].

EGE(W, 5)| <E[\/15(57w)2 ]
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Mutual information bounds

I(W;S)

Theorem (XR17, RZ15). |EGE(W,S)| < /202 5

Let J C [n] ={1,..., n} be uniformly distributed subset of size |J| = m < nand J 1 (S, W).
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Let Q(S) = P°[W] and P(S,)) = P>[W]. Then I3(W; S7) = E>/[KL(Q(S)||P(S5)))].

Theorem (NHDKR19). Assuming |J| =1 and ¢ € [0, 1].

BGE(W. ) < E/KL(Q(S)IP(S)/2
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Mutual information bounds

I(W;S)

Theorem (XR17, RZ15). |EGE(W,S)| < /202 5

Let J C [n] ={1,..., n} be uniformly distributed subset of size |J| = m < nand J 1 (S, W).
Let S = (SJ,S]).

Note I(W; S7|S,) = E[I>(W; S7)].
Let Q(S) = P°[W] and P(S,)) = P>[W]. Then I3(W; S7) = E>/[KL(Q(S)||P(S5)))].

Theorem (NHDKR19). Assuming |J| =1 and ¢ € [0, 1].

[EGE(W, S)| < E[\/KL(Q(S)||P(SJ))/2 holds for all kernels P(-)!
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Chain rule for KL

Let (Wo, Wi, ... W7) be iterates.
Define Q = Q(S) = P°[Wo.7], Q: = P°[W,] and Q| = P> Wer—1[W,].

Let P, P:, P, be arbitrary but depending on S not S.

.
Assume Py = Qo. Then KL(Qr||Pr) < KL(Q||P) = > E™KL(Qy||P:).

t=1
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Data-dependent priors for full-batch SGLD (i.e., Langevin algorithm)

Let S, be a random subset of S, of size m, chosen independently from Wy, Wi, ... .
The one-step distribution Qt| satisfies

Qt| = Qtl(s) =N <Wt - TItVZS(Wt) 2Zt Hd)

Consider the data-dependent prior, P,

PtPt(SJ)N<Wr]tVL51(Wt) gi )
t

The one-step KL divergence is then

Bf”t SR )3 where & = VIs(W,) — Vs, (W,).

“incoherence”

KL(QtH\H'DtH\)
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EGE bounds for SGLD

&i = VEIs(W,) — Vs (W)

Theorem (NHDKR19).

Bn < 1
EGE(Wr, S) < E\l B 17 ; 1¢ES [; ;II&JIP]

Theorem (MWZZ17).

=il

EGE(Wr,S) < \J b ZUtE[HVLS(Wt)”z]
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Effect of number of held-out points

MNIST, FC
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Empirical Evaluation
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MNIST, CNN
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Empirical Evaluation

MNIST, CNN Fashion-MNIST, CNN CIFAR10, CNN
h \\'\‘4\**\*—-/‘\—\.4/-\_ ’ . " M‘“M“/\-
1 4 lIEdE 4 R

4. —— |IVRJP — IR
\*‘ff\f‘f'ff A w0t «M ;
R I AT T T Tf TT 10 ! H‘ ﬁﬁﬁ’ﬁfﬁhf

',Wﬁmmwnmﬁwﬁﬁft fﬁm
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0 1 3 5 7 9 11 13 15 h 1 3 5 7 9 11 13 15 17 19 21 23 25 1 5 9 13 17 21 25 29 33 37 41 45 49
Training epochs. Training epochs. Training epochs
MNIST with MLP MNIST with CNN
Epoch 1 Epoch 2 Epoch 3 Epoch 1 Epoch 2 Epoch 3
Training Classification Error 25.524+0.08% | 16.17 +0.04% | 12.38 +0.02% | 21.89 +0.21% | 14.07 +0.14% | 10.78 +0.10%
Test Classification Error 25.57 £0.06% | 16.29 = 0.04% | 12.45+0.02% | 22.93 £0.20% | 14.72+0.14% | 11.24 +0.09%
Generalization Gap (Mou et al.) | 33.8+1.4% 76.0 +3.0% 139.4 +£5.9% 46.5 +2.2% 78.6 +3.0% 130.6 + 4.6%
Generalization Gap (Our Bound) | 10.0 4+ 1.6% 20.5 +4.0% 29.0 £6.7% 15.3+2.8% 25.8+4.4% | 49.2+10.4%
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Conclusion

» Mutual information bounds on expected generalization [XR17,RS15]

Advances in Neural Information Processing Systems



Conclusion

» Mutual information bounds on expected generalization [XR17,RS15]
» Sequential decomposition of mutual information for SGLD [PJL18,BZV19]

Advances in Neural Information Processing Systems



Conclusion

» Mutual information bounds on expected generalization [XR17,RS15]
» Sequential decomposition of mutual information for SGLD [PJL18,BZV19]
» Vacuousness in standard regimes

Advances in Neural Information Processing Systems



Conclusion

» Mutual information bounds on expected generalization [XR17,RS15]

» Sequential decomposition of mutual information for SGLD [PJL18,BZV19]
» Vacuousness in standard regimes

» Distribution-dependence via data-dependent priors

Advances in Neural Information Processing Systems



Conclusion

» Mutual information bounds on expected generalization [XR17,RS15]

» Sequential decomposition of mutual information for SGLD [PJL18,BZV19]
» Vacuousness in standard regimes

» Distribution-dependence via data-dependent priors

» Loose but nonvacuous bounds possible empirically

Advances in Neural Information Processing Systems



Conclusion

Mutual information bounds on expected generalization [XR17,RS15]
Sequential decomposition of mutual information for SGLD [PJL18,BZV19]
Vacuousness in standard regimes

Distribution-dependence via data-dependent priors

Loose but nonvacuous bounds possible empirically

More work needed to understand limits of mutual information based approaches

Advances in Neural Information Processing Systems



