
In Proc. 24th Conf. Uncertainty in Artificial Intelligence (UAI), 220–229, 2008. This version contains minor corrections (May 31, 2008).

Church: a language for generative models

Noah D. Goodman∗, Vikash K. Mansinghka∗,
Daniel Roy, Keith Bonawitz & Joshua B. Tenenbaum

MIT BCS/CSAIL
Cambridge, MA 02139

Abstract

Formal languages for probabilistic modeling
enable re-use, modularity, and descriptive
clarity, and can foster generic inference tech-
niques. We introduce Church, a universal
language for describing stochastic generative
processes. Church is based on the Lisp model
of lambda calculus, containing a pure Lisp
as its deterministic subset. The semantics of
Church is defined in terms of evaluation his-
tories and conditional distributions on such
histories. Church also includes a novel lan-
guage construct, the stochastic memoizer,
which enables simple description of many
complex non-parametric models. We illus-
trate language features through several ex-
amples, including: a generalized Bayes net
in which parameters cluster over trials, infi-
nite PCFGs, planning by inference, and var-
ious non-parametric clustering models. Fi-
nally, we show how to implement query on
any Church program, exactly and approxi-
mately, using Monte Carlo techniques.

1 INTRODUCTION

Probabilistic models have proven to be an enormously
useful tool in artificial intelligence, machine learning,
and cognitive science. Most often these models are
specified in a combination of natural and mathemat-
ical language, and inference for each new model is
implemented by hand. Stochastic programming lan-
guages [e.g. 12, 14, 10] aim to tame the model-building
process by giving a formal language which provides
simple, uniform, and re-usable descriptions of a wide
class of models, and supports generic inference tech-
niques. In this paper we present the Church stochastic

∗The first two authors contributed equally to this work.

programming language (named for computation pio-
neer Alonzo Church), a universal language for describ-
ing generative processes and conditional queries over
them. Because this language is based on Church’s
lambda calculus, expressions, which represent gener-
ative models, may be arbitrarily composed and ab-
stracted. The distinctive features of Church, and the
main contributions of this paper, are: 1) a Lisp-like
language specification in which we view evaluation
as sampling and query as conditional sampling, 2)
a stochastic memoizer, which allows separate evalua-
tions to share generative history and enables easy de-
scription of non-parametric probabilistic models, and,
3) generic schemes for exact and approximate infer-
ence, which implement the query primitive, so that any
Church program may be run without writing special-
purpose inference code.

2 THE CHURCH LANGUAGE

The Church language is based upon a pure subset
of the functional language Scheme [6], a Lisp dialect.
Church is a dynamically-typed, applicative-order lan-
guage, in which procedures are first-class and expres-
sions are values. Church expressions describe gen-
erative processes: the meaning of an expression is
specified through a primitive procedure eval, which
samples from the process, and a primitive procedure
query, which generalizes eval to sample condition-
ally. In true Lisp spirit, eval and query are ordinary
procedures that may be nested within a Church pro-
gram. Randomness is introduced through stochastic
primitive functions; memoization allows random com-
putations to be reused.

Church expressions have the form:

expression ::= c | x | (e1 e2 ...) | (lambda (x...) e) |
(if e1 e2 e3) | (define x e) | (quote e)

Here x stands for a variable (from a countable set of

variable symbols), ei for expressions, and c for a (prim-
itive) constant. (We often write ’e as shorthand for
(quote e).)

The constants include primitive data types (nil,
Boolean, char, integer, fixed-precision real, etc.), and
standard functions to build data structures (notably
pair, first, and rest for lists) and manipulate basic
types (e.g. and, not)1. As in most programming lan-
guages, all primitive types are countable; real numbers
are approximated by either fixed- or floating-precision
arithmetic. A number of standard (deterministic)
functions, such as the higher-order function map, are
provided as a standard library, automatically defined
in the global environment. Other standard Scheme
constructs are provided—such as (let ((a a-def)

(b b-def) ...) body), which introduces names that
can be used in body, and is sugar for nested lambdas.

Church values include Church expressions, and proce-
dures; if v1...vn are Church values the list (v1...vn) is a
Church value. A Church environment is a list of pairs
consisting of a variable symbol and a value (the vari-
able is bound to the value); note that an environment
is a Church value. Procedures come in two types: Or-
dinary procedures are triples, (body, args, env), of a
Church expression (the body), a list of variable sym-
bols (the formal parameters, or arguments), and an
environment. Elementary random procedures are or-
dinary procedures that also have a distribution func-
tion—a probability function that reports the probabil-
ity P (value | env, args) of a return value from evalu-
ating the body (via the eval procedure described be-
low) given env and values of the formal parameters2.

To provide an initial set of elementary random proce-
dures we allow stochastic primitive functions, in ad-
dition to the usual constants, that randomly sample
a return value depending only on the current envi-
ronment. Unlike other constants, these random func-
tions are available only wrapped into elementary ran-
dom procedures: (fun, args, env, dist), where
dist = P (value | env, args) is the probability func-
tion for fun. We include several elementary random
procedures, such as flip which flips a fair coin (or flips
a weighted coin when called with a weight argument).

1The primitive function gensym deserves special note:
(eval ’(gensym) env) returns a procedure (c, x, env)
where c is a constant function which returns True if x is
bound to the procedure (c, x, env), and False otherwise.
Furthermore it is guaranteed that (gensym (gensym))
evaluates to False (i.e. each evaluation of gensym results
in a unique value).

2This definition implies that when the body of an ele-
mentary random procedure is not a constant, its distribu-
tion function represents the marginal probability over any
other random choices made in evaluating the body. This
becomes important for implementing query.

• (eval ’c env): For constant c, return c(env).

• (eval ’x env): Look-up symbol x in env, return the
value it is bound to.

• (eval ’(e1 e2 ...) env): Evaluate each (eval ’ei
env). The value of (eval ’e1 env) should be a pro-
cedure (body, x2 ..., env2). Make env3 by extending
env2, binding x2 ... to the return values of e2
Return the value of (eval body env3).

• (eval ’(lambda (x...) e) env): Return the proce-
dure (e, x..., env).

• (eval ’(if e1 e2 e3) env): If (eval e1 env) re-
turns True return the return value of (eval e2 env),
otherwise of (eval e3 env).

• (eval ’(quote e) env): Return the expression e (as
a value).

• (eval ’(define x e) env): Extend env by binding
the value of (eval ’e env) to x; return the extended
environment.

Figure 1: An informal definition of the eval procedure. If
preconditions of these descriptions fail the constant value
error is returned. Note that constants represent (possibly
stochastic) functions from environments to values—truly
“constant” constants return themselves.

A Church expression defines a generative process via
the recursive evaluation procedure, eval. This prim-
itive procedure takes an expression and an environ-
ment and returns a value—it is an environment model,
shared with Scheme, of Church’s lambda calculus
[4, 6]. The evaluation rules are given in Fig. 1. An
evaluation history for an expression e is the sequence of
recursive calls to eval, and their return values, made
by (eval ’e env). The probability of a finite eval-
uation history is the product of the probabilities for
each elementary random procedure evaluation in this
history3. The weight of an expression in a particu-
lar environment is the sum of the probabilities of all
of its finite evaluation histories. An expression is ad-
missible in an environment if it has weight one, and
a procedure is admissible if its body is admissible in
its environment for all values of its arguments. An ad-
missible expression defines a distribution on evaluation
histories (we make this claim precise in section 2.2).
Note that an admissible expression can have infinite
histories, but the set of infinite histories must have
probability zero. Thus admissibility can be thought
of as the requirement that evaluation of an expression
halts with probability one. Marginalizing this distri-
bution over histories results in a distribution on values,
which we write µ(e, env). Thus, (eval ’e env), for
admissible e, returns a sample from µ(e, env).

3However, if evaluating an elementary random proce-
dure results in evaluating another elementary random pro-
cedure we take only the probability of the first, since it
already includes the second.

The procedure eval allows us to interpret Church
as a language for generative processes, but for use-
ful probabilistic inference we must be able to sam-
ple from a distribution conditioned on some asser-
tions (for instance the posterior probability of a hy-
pothesis conditioned on observed data). The pro-
cedure (query ’e p env) is defined to be a proce-
dure which samples a value from µ(e, env) condi-
tioned on the predicate procedure p returning True

when applied to the value of (eval ’e env). The
environment argument env is optional, defaulting to
the current environment. (Note that the special case
of query when the predicate p is the constant pro-
cedure (lambda (x) True) defines the same distri-
bution on values as eval.) For example, one might
write (query ’(pair (flip) (flip)) (lambda (v)

(+ (first v) (last v)))) to describe the condi-
tional distribution of two flips given that at least one
flip landed heads. If e or p are not admissible in
env the query result is undefined. We describe this
conditional distribution, and conditions for its well-
definedness, more formally in Theorem 2.3. In Section
4 we consider Monte Carlo techniques for implement-
ing query.

It can be awkward in practice to write programs using
query, because many random values must be explic-
itly passed from the query expression to the predicate
through the return value. An alternative is to provide
a means to name random values which are shared by
all evaluations, building up a “random world” within
the query. To enable a this style of programming,
we provide the procedure lex-query (for “lexicalizing
query”) which has the form:

(lex-query

’((A A-definition)
(B B-definition)
...)

’e ’p)

where the first argument binds a lexicon of symbols to
definitions, which are available in the environment in
which the remaining (query and predicate) expressions
are evaluated. In this form the predicate is an expres-
sion, and the final environment argument is omitted—
the current environment is used.

A program in Church consists of a sequence of Church
expressions—this sequence is called the top level. Any
definitions at the top level are treated as extending the
global (i.e. initial) environment, which then is used
to evaluate the remaining top-level expressions. For
instance:
(define A e1) e2
is treated as:
(eval ’e2 (eval ’(define A e1) global-env)).

2.1 Stochastic Memoization

In deterministic computation, memoization is a tech-
nique for efficient implementation that does not affect
the language semantics: the first time a (purely func-
tional) procedure is evaluated with given arguments
its return value is recorded; thereafter evaluations of
that procedure with those arguments directly return
this value, without re-evaluating the procedure body.
Memoization of a stochastic program can radically
change the semantics: if flip is an ordinary random
procedure (= (flip) (flip)) is True with probabil-
ity 0.5, but if flip is memoized this expression is True
with probability one. More generally, a collection of
memoized functions has a random-world semantics as
discussed in [10]. In Section 3 we use memoization
together with lex-query to describe generative pro-
cesses involving an unknown number of objects with
persistent features, similar to the BLOG language [12].

To formally define memoization in Church, we imagine
extending the notion of environment to allow count-
ably many variables to be bound in an environment.
The higher-order procedure mem takes an admissible-
procedure and returns another procedure: if (eval e
env) returns the admissible procedure (body, args,

env2), then (eval ’(mem e) env) returns the mem-
oized procedure (mfune, args, env+), where:

• env+ is env2 (notionally) extended with a symbol
Vval, for each value val, bound to a value drawn
from the distribution µ((e val), env).

• mfune is a new constant function such that mfune
applied to the environment env+ extended with
args bound to val returns the value bound to
Vval.

This definition implies that infinitely many random
choices may be made when a memoized random pro-
cedure is created—the notion of admissibility must be
extended to expressions which involve mem. In the next
section we describe an appropriate extension of admis-
sibility, such that admissible expressions still define a
marginal distribution on values, and the conditional
distributions defining query are well-formed.

Ordinary memoization becomes a semantically mean-
ingful construct within stochastic languages. This sug-
gests that there may be useful generalizations of mem,
which are not apparent in non-stochastic computation.
Indeed, instead of always returning the initial value
or always re-evaluating, one could stochastically de-
cide on each evaluation whether to use a previously
computed value or evaluate anew. We define such a
stochastic memoizer DPmem by using the Dirichlet pro-
cess (DP) [20]—a distribution on discrete distributions

(define (DP alpha proc)
(let ((sticks (mem (lambda x (beta 1.0 alpha))))

(atoms (mem (lambda x (proc)))))
(lambda () (atoms (pick-a-stick sticks 1)))))

(define (pick-a-stick sticks J)
(if (< (random) (sticks J))

J
(pick-a-stick sticks (+ J 1))))

(define (DPmem alpha proc)
(let ((dps (mem (lambda args

(DP alpha
(lambda () (apply proc args))
)))))

(lambda argsin ((apply dps argsin)))))

Figure 2: Church implementation of the Dirichlet Process,
via stick breaking, and DPmem. (Evaluating (apply proc
args) in env for args=(a1 ...) is equivalent to (eval
’(proc a1 ...) env).)

built from an underlying base measure. For an admis-
sible procedure e, the expression (DPmem a e) evalu-
ates in env to a procedure which samples from a (fixed)
sample from the DP with base measure µ(e, env) and
concentration parameter a. (When a=0, DPmem re-
duces to mem, when a=∞, it reduces to the identity.)
The notion of using the Dirichlet process to cache gen-
erative histories was first suggested in Johnson et al.
[5], in the context of grammar learning. In Fig. 2
we write the Dirichlet Process and DPmem directly in
Church, via a stick-breaking representation. This gives
a definition of these objects, proves that they are se-
mantically well-formed (provided the rest of the lan-
guage is), and gives one possible implementation.

We pause here to explain choices made in the lan-
guage definition. Programs written with pure func-
tions, those that always return the same value when
applied to the same arguments, have a number of ad-
vantages. It is clear that a random function cannot
be pure, yet there should be an appropriate general-
ization of purity which maintains some locality of in-
formation. We believe the right notion of purity in a
stochastic language is exchangeability : if an expression
is evaluated several times in the same environment, the
distribution on return values is invariant to the order
of evaluations. This exchangeability is exploited by
the Metropolis-Hastings algorithm for approximating
query given in Section 4.

Mutable state (or an unpleasant, whole-program
transformation into continuation passing style) is nec-
essary to implement Church, both to model random-
ness and to implement mem using finite computa-
tion. However, this statefulness preserves exchange-
ability. Understanding the ways in which other state-
ful language constructs—in particular, primitives for

the construction and modification of mutable state—
might aid in the description of stochastic processes
remains an important area for future work.

2.2 Semantic Correctness

In this section we give formal statements of the claims
above, needed to specify the semantics of Church, and
sketch their proofs. Let Church− denote the set of
Church expressions that do not include mem.

Lemma 2.1. If e ∈ Church− then the weight of e in
a given environment is well-defined and ≤ 1.

Proof sketch. Arrange the recursive calls to eval into
a tree with an evaluation at each node and edges con-
necting successive applications of eval—if a node in-
dicates the evaluation of an elementary random proce-
dure there will be several edges descending from this
node (one for each possible return value), and these
edges are labeled with their probability. A history is a
path from root to leaf in this tree and its probability
is the product of the labels along the path. Let Wn in-
dicate the sum of probabilities of paths of length n or
less. The claim is now that limn→∞Wn converges and
is bounded above by 1. The bound follows because the
sum of labels below any random node is 1; convergence
then follows from the monotone convergence theorem
because the labels are non-negative.

We next extend the notion of admissibility to arbitrary
Church expressions involving mem. To compute the
probability of an evaluation history we must include
the probability of calls to mem—that is, the probabil-
ity of drawing each return value Vval. Because there
are infinitely many Vval, the probability of many histo-
ries will then be zero, therefore we pass to equivalence
classes of histories. Two histories are equivalent if they
are the same up to the values bound to Vval—in par-
ticular they must evaluate all memoized procedures on
the same arguments with the same return values. The
probability of an equivalence class of histories is the
marginal probability over all unused arguments and
return values, and this is non-zero. The weight of an
expression can now be defined as the sum over equiv-
alence classes of finite histories.

Lemma 2.2. The admissibility of a Church expres-
sion in a given environment is well defined, and any
expression e admissible in environment env defines a
distribution µ(e, env) on return values of (eval ’e
env).

Proof sketch: The proof is by induction on the number
of times mem is used. Take as base case expressions
without mem; by Lemma 2.1 the weight is well defined,
so the set of admissible expressions is also well defined.

This function provides persistent class assignments to ob-
jects, where classes are symbols drawn from a pool with DP
prior:

(define drawclass (DPmem 1.0 gensym))
(define class (mem (lambda (obj) (drawclass))))

For the beta-binomial model there’s a coin weight for each
feature/class pair, and each object has features that depend
only on it’s type:

(define coin-weight
(mem (lambda (feat obj-class) (beta 1 1))))

(define value
(mem (lambda (obj feat)

(flip (coin-weight feat (class obj))))))

For a gaussian-mixture on continuous data (with known
variance), we just change the code for generating values:

(define mean
(mem (lambda (obj-class) (normal 0.0 10.0))))

(define cont-value
(mem (lambda (obj)

(normal (mean (class obj)) 1.0))))

The infinite relational model [7] with continuous data is sim-
ilar, but means depend on classes of two objects:

(define irm-mean
(mem (lambda (obj-class1 obj-class2)

(normal 0.0 10.0))))
(define irm-value

(mem (lambda (obj1 obj2)
(normal (irm-mean (class obj1) (class obj2))

1.0))))

Figure 3: Church expressions for infinite mixture type
models, showing use of the random-world programming
style in which objects have persistent properties. Func-
tions beta and normal generate samples from these stan-
dard distributions.

Now, assume p = (body, args, env) is an admis-
sible procedure with well defined distribution on re-
turn values. The return from (mem p) is well defined,
because the underlying measure µ(p, env) is well de-
fined. It is then straightforward to show that any ex-
pression involving (mem p), but no other new memo-
ized procedures, has a well defined weight. The induc-
tion step follows.

A subtlety in this argument comes if one wishes to ex-
press recursive memoized functions such as:
(define F (mem (lambda (x) (... F ...)))).
Prima facie this recursion seems to eliminate the
memoization-free base case. However, any recursive
definition (or set of definitions) may be re-written
without recursion in terms of a fixed-point combinator:
(define F (fix ...)). With this replacement made
we are reduced to the expected situation—application
of fix may fail to halt, in which case F will be inad-
missible, but the weight is well defined.

Lemma 2.2 only applies to expressions involving mem

for admissible procedures—a relaxation is possible for
partially admissible procedures in some situations.
From Lemma 2.2 it is straightforward to prove:

Theorem 2.3. Assume expression e and procedure p
are admissible in env, and let V be a random value dis-
tributed according to µ(e, env). If there exists a value
v in the support of µ(e, env) and True has non-zero
probability under µ((p v), env), then the conditional
probability

P (V=val | (eval ’(p V) env)=True)

is well defined.

Theorem 2.3 shows that query is a well-posed proce-
dure; in Section 4 we turn to the technical challenge
of actually implementing query.

3 EXAMPLE PROGRAMS

In this section we describe a number of example pro-
grams, stressing the ability of Church to express a
range of standard generative models. As our first ex-
ample, we describe diagnostic causal reasoning in a
simple scenario: given that the grass is wet on a given
day, did it rain (or did the sprinkler come on)? In
outline of this might take the form of the query:

(lex-query
’((grass-is-wet ...)

(rain ...)
(sprinkler ...)

’(rain ’day2)
’(grass-is-wet ’day2))

where we define a causal model by defining functions
that describe whether it rained, whether the sprin-
kler was on, and whether the grass is wet. The func-
tion grass-is-wet will depend on both rain and
sprinkler—first we define a noisy-or function:

(define (noisy-or a astrength b bstrength baserate)
(or (and (flip astrength) a)

(and (flip bstrength) b)
(flip baserate)))

Using this noisy-or function, and a look-up table for
various weights, we can fill in the causal model:

(lex-query
’((weight (lambda (ofwhat)

(case ofwhat
((’rain-str) 0.9)
((’rain-prior) 0.3)
..etc..)))

(grass-is-wet (mem (lambda (day)
(noisy-or

(rain day) (weight ’rain-str)
(sprinkler day) (weight ’sprinkler-str)
(weight ’grass-baserate)))))

This deterministic higher-order function defines the basic
structure of stochastic transition models:

(define (unfold expander symbol)
(if (terminal? symbol)

symbol
(map (lambda (x) (unfold expander x))

(expander symbol))))

A Church model for a PCFG transitions via a fixed multi-
nomial over expansions for each symbol:

(define (PCFG-productions symbol)
(cond ((eq? symbol ’S)

(multinomial ’((S a) (T a)) ’(0.2 0.8)))
((eq? symbol ’T)
(multinomial ’((T b) (a b)) ’(0.3 0.7))))

(define (sample-pcfg) (unfold PCFG-productions ’S))

The HDP-HMM [2] uses memoized symbols for states and
memoizes transitions:

(define get-symbol (DPmem 1.0 gensym))
(define get-observation-model

(mem (lambda (symbol) (make-100-sided-die))))
(define ihmm-transition

(DPmem 1.0 (lambda (state)
(if (flip) ’stop (get-symbol))

(define (ihmm-expander symbol)
(list ((get-observation-model symbol))

(ihmm-transition symbol)))
(define (sample-ihmm) (unfold ihmm-expander ’S))

The HDP-PCFG [8] is also straightforward:

(define terms ’(a b c d))
(define term-probs ’(.1 .2 .2 .5))
(define rule-type

(mem (lambda symbol)
(if (flip) ’terminal ’binary-production))

(define ipcfg-expander
(DPmem 1.0

(lambda (symbol)
(if (eq? (rule-type symbol) ’terminal)

(multinomial terms term-probs)
(list (get-symbol) (get-symbol))))

(define (sample-ipcfg) (unfold ipcfg-expander ’S))

Making adapted versions of any of these models [5] only
requires stochastically memoizing unfold:

(define adapted-unfold
(DPmem 1.0

(lambda (expander symbol)
(if (terminal? symbol)

symbol
(map (lambda (x)

(adapted-unfold expander x))
(expander symbol))))))

Figure 4: Some examples of “stochastic transition models”.

(rain (mem (lambda (day)
(flip (weight ’rain-prior)))))

(sprinkler (mem (lambda (day)
(flip (weight ’sprinkler-prior))))))

’(rain ’day2)
’(grass-is-wet ’day2))

Note that we have used mem to make the
grass-is-wet, rain, and sprinkler functions persis-
tent. For example, (= (rain ’day2) (rain ’day2))

is always True (it either rained on day two or not),
this is necessary since both the query and predicate
expressions will evaluate (rain ’day2).

A Bayes net representation of this example would have
clearly exposed the dependencies involved (though it
would need to be supplemented with descriptions of
the form of these dependencies). The Church repre-
sentation, while more complex, lends itself to intuitive
extensions that would be quite difficult in a Bayes net
formulation. For instance, what if we don’t know the
Bernoulli weights, but we do have observations of other
days? We can capture this by drawing the weights
from a hyper-prior, redefining the weight function to:

...(weight (mem (lambda (ofwhat) (beta 1 1))))...

If we now query conditioned on observations from
other days, we implicitly learn the weight parameters
of the model:

(lex-query
’...model definitions...
’(rain ’day2)
’(and
(grass-is-wet ’day1)
(rain ’day1)
(not (sprinkler ’day1))
(grass-is-wet ’day2)))

Going further, perhaps the probability of rain depends
on (unknown) types of days (e.g. those with cumulus
clouds, cirrus clouds, etc.), and perhaps the probabil-
ity of the sprinkler activating depends on orthogonal
types of days (e.g. Mondays and Fridays versus other
days). We can model this scenario by drawing the
prior probabilities from two stochastically memoized
beta distributions:

(lex-query
’((new-rain-prob

(DPmem 1.0 (lambda () (beta 1 1))))
(new-sprinkler-prob
(DPmem 1.0 (lambda () (beta 1 1))))

(rain (mem (lambda (day)
(flip (new-rain-prob)))))

(sprinkler (mem (lambda (day)
(flip (new-sprinkler-prob))))))

...)

With this simple change we have extended the original
causal model into an infinite mixture of such models,

in which days are co-clustered into two sets of types,
based on their relationship to the wetness of the grass.

In the previous example we left the types of days im-
plicit in the memoizer, using only the probability of
rain or sprinkler. In Fig. 3 we have given Church im-
plementations for several infinite mixture models [see
7] using a different idiom—making the types into per-
sistent properties of objects, drawn from an under-
lying memoized gensym (recall that gensym is sim-
ply a procedure which returns a unique value on each
evaluation). Once we have defined the basic struc-
ture, class to draw latent classes for objects, it is
straightforward to define the latent information for
each class (e.g. coin-weight), and the observation
model (e.g. value). This basic structure may be used
to easily describe more complicated mixture models,
such as the continuous-data infinite relational model
(IRM) from [7]. Fig. 3 describes forward sampling for
these models; to describe a conditional model, these
definitions must be made within the scope of a query.
For instance, if we wished to query whether two ob-
jects have the same class, conditioned on observed fea-
tures:

(lex-query
’((drawclass (mem 1.0 gensym))

(class ...)
(coin-weight ...)
(value ...))

’(= (class ’alice) (class ’bob))
’(and

(= (value ’alice ’blond) 1)
(= (value ’bob ’blond) 1)
(= (value ’jim ’blond) 0)))

Another idiom (Fig. 4) allows us to write the com-
mon class of “stochastic transition” models, which in-
cludes probabilistic context free grammars (PCFGs),
hidden Markov models (HMMs), and their “infinite”
analogs. Writing the HDP-PCFG [8] and HDP-HMM
[2] in Church provides a compact and clear specifica-
tion to these complicated non-parametric models. If
we memoize unfold and use this adapted-unfold on
PCFG transitions we recover the Adaptor Grammar
model of [5]; if we similarly “adapt” the HDP-PCFG
or HDP-HMM we get interesting new models that have
not been considered in the literature.

Fig. 5(top) gives an outline for using Church to repre-
sent planning problems. This is based on the transla-
tion of planning into inference, given in Toussaint et al.
[21], in which rewards are transformed into the proba-
bility of getting a single “ultimate reward”. Inference
on this representation results in decisions which soft-
maximizes the expected reward. Fig. 5(bottom) fills
in this framework for a simple “red-light” game: the
state is a light color (red/green) and an integer po-
sition, a “go” action advances one position forward

(define (transition state-action)
(pair
(forward-model state-action)
(action-prior)))

(define (terminal? symbol) (flip gamma))
(define (reward-pred rewards)

(flip ((/ (sum rewards) (length rewards)))))
(lex-query

’((first-action (action-prior))
(final-state

(first (unfold transition
(pair start-state first-action))))

(reward-list
(list (sp1 final-state)

(sp2 final-state)
..etc..))

’first-action
’(reward-pred reward-list))

(define (forward-model s-a)
(pair
(if (flip 0.5) ’red-light ’green-light)
(let ((light (first (first s-a)))

(position (last (first s-a)))
(action (last s-a)))

(if (eq? action ’go)
(if (and (eq? light ’red-light)

(flip cheat-det))
0
(+ position 1))

position))))
(define (action-prior) (if (flip 0.5) ’go ’stop))
(define (sp1 state) (if (> (last state) 5) 1 0))

Figure 5: Top: The skeleton of planning-as-inference in
Church (inspired by [21]). For simplicity, we assume an
equal reward amount for each boolean “state property”
that is true. Reward is given only when the state reaches
a “terminal state”, however the stochastic termination de-
cision given by terminal? results in an infinite horizon
with discount factor gamma. Bottom: A specific planning
problem for the “red-light” game.

except that going on a red light results in being sent
back to position 0 with probability cheat-det. The
goal is to be past position 5 when the game ends; other
rewards (e.g. for a staged game) could be added by
adding sp2, sp3, and so on.

4 CHURCH IMPLEMENTATION

Implementing Church involves two complications be-
yond the implementation of eval as shown in Fig. 1
(which is essentially the same as any lexically scoped,
applicative order, pure Lisp [6]). First, we must find a
way to implement mem without requiring infinite struc-
tures (such as the Vval). Second, we must implement
query by devising a means to sample from the appro-
priate conditional distribution.

To implement mem we first note that the countably
many Vval are not all needed at once: they can be

!0.4 !0.2 0.2 0.4

0.5

1.0

1.5

2.0

!0.4 !0.2 0.2 0.4

0.5

1.0

1.5

Figure 6: Posterior
samples from the
infinite gaussian-
mixture (with un-
known variance)
of Section 3, using
the collapsed rejec-
tion algorithm for
query. Two data-
sets are shown (as
dots) with mixture
components and
posterior predictive
distribution.

created as needed, extending the environment env+

when they are created. (Note that this implementation
choices is stateful, but may be implemented easily in
full Scheme: the argument/return value pairs can be
stored in an association list which grows as need.)4

We now turn to query. The sampling-based semantics
of Church allows us to define a simple rejection sampler
from the conditional distribution defining query; we
may describe this as a Church expression:

(define (query exp pred env)
(let ((val (eval exp env))
(if (pred val)

val
(query exp pred env)))))

The ability to write query as a Church program—
a metacircular [1] implementation—provides a com-
pelling argument for Church’s modeling power. How-
ever, exact sampling using this algorithm will often be
intractable. It is straightforward to implement a col-
lapsed rejection sampler that integrates out random-
ness in the predicate procedure (accepting or rejecting
a val with probability equal to the marginal probabil-
ity that (p val) is true). We show results in Fig. 6 of
this exact sampler used to query the infinite gaussian-
mixture model from Section 3.

In Fig. 7 we show the result of running the collapsed
rejection query for planning in the “red-light” game,
as shown in Fig. 5 (here gamma=0.2, cheat-det=0.7).
The result is intuitive: when position is near 0 there
is little to lose by “cheating”, as position nears 5 (the
goal line) there is more to loose, hence the probability
of cheating decreases; once past the goal line there is
nothing to be gained by going, so the probability of
cheating drops sharply. Note that the “soft-max” for-
mulation of planning used here results in fairly random
behavior even in extreme positions.

4A further optimization implements DPmem via the Chi-
nese restaurant process representation of the DP [15].

0 1 2 3 4 5 6

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Position

P
ro

ba
bi

lit
y

of
 c

ho
si

ng
 a

ct
io

n
’g

o’
.

Figure 7: Results from
planning in the “red-
light” game (Fig. 5),
showing the probability
of “cheating” (going
when the light is red)
versus position. The
goal is to end the game
past position 5.

4.1 A Metropolis-Hastings Algorithm

We now present a Markov chain Monte Carlo algo-
rithm for approximately implementing query, as we
expect (even collapsed) rejection sampling to be in-
tractable in general. Our algorithm executes stochas-
tic local search over evaluation histories, making small
changes by proposing changes to the return values of
elementary random procedures. These changes are
constrained to produce the conditioned result, collaps-
ing out the predicate expression via its marginal prob-
ability5. The use of evaluation histories, rather than
values alone, can be viewed as an extreme form of
data-augmentation: all random choices that lead to a
value are made explicit in its history.

The key abstraction we use for MCMC is the computa-
tion trace. A computation trace is a directed, acyclic
graph composed of two connected trees. The first is
a tree of evaluations, where an evaluation node points
to evaluation nodes for its recursive calls to eval. The
second is a tree of environment extensions, where the
node for an extended environment points to the node
of the environment it extends. The evaluation node for
each (eval ’e env) points to the environment node
for env, and evaluation nodes producing values to be
bound are pointed to by the environment extension of
the binding. Traces are in one-to-one correspondence
with equivalence classes of evaluation histories, de-
scribed earlier6. Fig. 8 shows the fragment of a compu-
tation trace for evaluation of the expression ((lambda

(x) (+ x 3)) (flip)).

For each elementary random procedure p we need a
Markov chain transition kernel Kp that proposes a
new return value for that procedure given its cur-
rent arguments. A generic such kernel comes from re-

5Handling the rejection problem on chain initialization
(and queries across deterministic programs, more gener-
ally) is a challenge. Replacing all language primitives (in-
cluding if) with noisy alternatives and using tempering
techniques provides one general solution, to be explored in
future work.

6Also note that the acyclicity of traces is a direct result
of the purity of the Church language: if a symbol’s value
were mutated, its environment would point to the evalu-
ation node that determined its new value, but that node
would have been evaluated in the same environment.

Figure 8: A schematic computation trace.

evaluating (eval ’(p args) env); however, a proper
Church standard library could frequently supply more
efficient proposal kernels for particular procedures (for
instance a drift kernel for normal). Our requirement
is that we are able to sample a proposal from Kp as
well as evaluate its transition probability qp(·|·).

If we simply apply Kp to a trace, the trace can be-
come “inconsistent”—no longer representing a valid
evaluation history from eval. To construct a com-
plete Metropolis-Hastings proposal from Kp, we must
keep the computation trace consistent, and modify the
proposal probabilities accordingly, by recursing along
the trace updating values and potentially triggering
new evaluations. For example, if we change the value
of flip in (if (flip) e1 e2) from False to True we
must: absorb the probability of (eval e2 env) in the
reverse proposal probability, evaluate e1 and attach
it to the trace, and include the probability of the re-
sulting sub-trace in the forward proposal probability.
(For a particular trace, the probability of the sub-trace
for expression e is the probability of the equivalence
class of evaluation histories corresponding to this sub-
trace.) The recursions for trace consistency and pro-
posal computation are delicate but straightforward,
and we omit the details due to space constraints7.
Each step of our MCMC algorithm8 consists of apply-
ing a kernel Kp to the evaluations of a randomly chosen
elementary random primitive in the trace, updating
the trace to maintain consistency (collecting appro-
priate corrections to the proposal probability), and
applying the Metropolis-Hastings criterion to accept
or reject this proposal. (This algorithm ignores some
details needed for queries containing nested queries,
though we believe these to be straightforward.)

We have implemented and verified this algorithm on
several examples that exercise all of the recursion and
update logic of the system. In Fig. 9 we have shown
convergence results for this algorithm running on the
simple “sprinkler” example of Section 3.

7We implemented our MCMC algorithm atop the Blaise
system [3], which simplifies these recursively triggered ker-
nel compositions.

8At the time of writing we have not implemented this
algorithm for programs that use mem, though we believe
the necessary additions to be straightforward.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100
0.8

0.9

1

1.1

1.2

1.3

Number of samples from query.

Figure 9: Conver-
gence of one run
of the MCMC al-
gorithm on the
“sprinkler” exam-
ple. (Each sample
from query uses
30 MCMC steps.)
Top: The probabil-
ity of rain. Bot-
tom: The expected
value of (+ (rain)
(sprinkler)),
showing explain-
ing away. The sum
is slightly above 1.0
because one cause is
usually present, but
both rarely are.

5 DISCUSSION

While Church builds on many other attempts to marry
probability theory with computation, it is distinct in
several important ways. First, Church is founded on
the lambda calculus, allowing it to represent higher-
order logic and separating it from many related lan-
guages. For example, unlike several widely used lan-
guages grounded in propositional logic (e.g. BUGS [9])
and first-order logic (e.g. the logic programming ap-
proaches of [13, 19], BLOG [12], and Markov logic
[18]), generative processes in Church are first-class ob-
jects that can be arbitrarily composed and abstracted.
The example programs in Section 3 illustrate the rep-
resentational flexibility of Church; while some of these
programs may be naturally represented in one or an-
other existing language, we believe that no other lan-
guage can easily represent all of these examples.

The stochastic functional language IBAL [14], based
on the functional language ML, is quite similar to
Church, but the two languages emphasize different
aspects of functional programming. Other related
work includes non-determistic [11] and weighted non-
deterministic [16] extensions to Lisp. Unlike these ap-
proaches, the semantics of Church is fundamentally
sampling-based: the denotation of admissible expres-
sions as distributions follows from the semantics of
evaluation rather than defining it. This semantics,
combined with dynamic typing (cf. static typing of
ML), permits the definition and exact implementation
of query as an ordinary Church procedure, rather than
a special transformation applied to the distribution
denoted by a program. Because query is defined via
sampling, describing approximate inference is partic-
ularly natural within Church.

A number of the more unusual features of Church as a
stochastic programming language derive from its ba-

sis in Lisp. Since query and eval are the basic con-
structs defining the meaning of Church expressions, we
have a metacircular [17] description of Church within
Church. This provides clarity in reasoning about the
language, and allows self-reflection within programs:
queries may be nested within queries, and programs
may reason about programs. Church expressions can
serve both as a declarative notation for uncertain be-
liefs (via the distributions they represent) and as a
procedural notation for stochastic and deterministic
processes (via evaluation). Because expressions are
themselves values, this generalizes the Lisp unifica-
tion of programs and data to a unification of stochas-
tic processes, Church expressions, and uncertain be-
liefs. These observations suggest exciting new mod-
eling paradigms. For instance, eval nested within
query may be used to learn programs, where the prior
on programs is represented by another Church pro-
gram. Issues of programming style then become issues
of description length and inductive bias. As another
example, query nested within query may be used to
represent an agent reasoning about another agent.

Of course, Church’s representational flexibility comes
at the cost of substantially increased inference com-
plexity. Providing efficient implementations of query
is a critical challenge as our current implementation
is not yet efficient enough for typical machine learn-
ing applications; this may be greatly aided by building
on techniques used for inference in other probabilistic
languages [e.g. 10, 14, 12]. For example, in Church, ex-
act inference by enumeration could be seen as a pro-
gram analysis that transforms expressions involving
query into expressions involving only eval; identifying
and exploiting opportunities for such transformations
seems appealing.

Probabilistic models and stochastic algorithms are
finding increasingly widespread use throughout artifi-
cial intelligence and cognitive science, central to areas
as diverse as vision, planning, and natural language
understanding. As their usage grows and becomes
more intricate, so does the need for formal languages
supporting model exchange, reuse, and machine exe-
cution. We hope Church represents a significant step
toward this goal.

Acknowledgements

The authors would like to thank Gerry Sussman, Hal
Abelson, Tom Knight, Brian Milch, David McAllester
and Alexey Radul for helpful discussions. This work
was funded in part by a grant from NTT Communi-
cation Sciences Laboratory.

References

[1] H. Abelson and G. Sussman. Structure and Interpre-
tation of Computer Programs. MIT Press, 1996.

[2] M.J. Beal, Z. Ghahramani, and C.E. Rasmussen. The
infinite hidden Markov model. NIPS 14, 2002.

[3] K. A. Bonawitz. Composable Probabilistic Inference
with Blaise. PhD thesis, MIT, 2008.

[4] A. Church. A Set of Postulates for the Foundation
of Logic. The Annals of Mathematics, 33(2):346–366,
1932.

[5] M. Johnson, T. Griffiths, and S. Goldwater. Adaptor
grammars: A framework for specifying compositional
nonparametric Bayesian models. NIPS 19, 2007.

[6] R. Kelsey, W. Clinger, and J. Rees (eds.). Revised5

Report on the Algorithmic Language Scheme. Higher-
Order and Symbolic Computation, 11(1):7–105, 1998.

[7] C. Kemp, J.B. Tenenbaum, T.L. Griffiths, T. Ya-
mada, and N. Ueda. Learning systems of concepts
with an infinite relational model. Proc. 21st Natl
Conf. Artif. Intell., AAAI Press, 2006.

[8] P. Liang, S. Petrov, M.I. Jordan, and D. Klein. The
Infinite PCFG using Hierarchical Dirichlet Processes.
Proc. EMNLP-CoNLL, 2007.

[9] D.J. Lunn, A. Thomas, N. Best, and D. Spiegel-
halter. WinBUGS-A Bayesian modelling framework:
Concepts, structure, and extensibility. Statistics and
Computing, 10(4):325–337, 2000.

[10] D. McAllester, B. Milch, and N. D. Goodman.
Random-world semantics and syntactic indepen-
dence for expressive languages. Technical Report
MIT-CSAIL-TR-2008-025, Massachusetts Institute of
Technology, 2008.

[11] J. McCarthy. A Basis for a Mathematical Theory of
Computation. In Computer Programming and Formal
Systems, pages 33–70, 1963.

[12] B. Milch, B. Marthi, S. Russell, D. Sontag, D.L. Ong,
and A. Kolobov. BLOG: Probabilistic models with
unknown objects. Proc. IJCAI, 2005.

[13] S. Muggleton. Stochastic logic programs. In
L. de Raedt, editor, Advances in Inductive Logic Pro-
gramming, pages 254–264. IOS Press, 1996.

[14] A. Pfeffer. IBAL: A probabilistic rational program-
ming language. Proc. IJCAI, 2001.

[15] J. Pitman. Combinatorial stochastic processes, 2002.
Notes for Saint Flour Summer School.

[16] A. Radul. Report on the probabilistic language
scheme. Technical Report MIT-CSAIL-TR-2007-059,
Massachusetts Institute of Technology, 2007.

[17] J.C. Reynolds. Definitional interpreters for higher-
order programming. ACM Annual Conference, pages
717–740, 1972.

[18] M. Richardson and P. Domingos. Markov logic net-
works. Machine Learning, 62(1):107–136, 2006.

[19] T. Sato and Y. Kameya. PRISM: A symbolic-
statistical modeling language. In International Joint
Conference on Artificial Intelligence, 1997.

[20] J. Sethuraman. A Constructive definition of Dirichlet
priors. Statistica Sinica, 4, 1994.

[21] M. Toussaint, S. Harmeling, and A. Storkey. Prob-
abilistic inference for solving (PO)MDPs. Technical
Report EDI-INF-RR-0934, University of Edinburgh,
2006.

