
A Dynamic Technique for Eliminating Buffer Overflow
Vulnerabilities (and Other Memory Errors)

Martin Rinard, Cristian Cadar, Daniel Dumitran, Daniel M. Roy, and Tudor Leu
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology
Cambridge, MA 02139

ABSTRACT
Buffer overflow vulnerabilities are caused by programming
errors that allow an attacker to cause the program to write
beyond the bounds of an allocated memory block to corrupt
other data structures. The standard way to exploit a buffer
overflow vulnerability involves a request that is too large
for the buffer intended to hold it. The buffer overflow error
causes the program to write part of the request beyond the
bounds of the buffer, corrupting the address space of the
program and causing the program to execute injected code
contained in the request.

We have implemented a compiler that inserts dynamic
checks into the generated code to detect all out of bounds
memory accesses. When it detects an out of bounds write,
it stores the value away in a hash table to return as the
value for corresponding out of bounds reads. The net effect
is to (conceptually) give each allocated memory block un-
bounded size and to eliminate out of bounds accesses as a
programming error.

We have acquired several widely used open source servers
(Apache, Sendmail, Pine, Mutt, and Midnight Comman-
der). With standard compilers, all of these servers are vul-
nerable to buffer overflow attacks as documented at security
tracking web sites. Our compiler eliminates these security
vulnerabilities (as well as other memory errors). Our re-
sults show that our compiler enables the servers to execute
successfully through buffer overflow attacks to continue to
correctly service user requests without security vulnerabili-
ties.

1. INTRODUCTION
Standard programming languages (Fortran, C, Java, C++)

allow programmers to create (statically or dynamically) and
then access memory blocks (such as buffers, objects, structs,
or arrays) of a fixed size. An attempt by the program to use
a reference to a block to access memory outside the block
is considered to be a programming error. The meaning of
a program containing such an error varies from language to
language. Java implementations, for example, check all ac-
cesses and throw an exception if the program attempts to
access out of bounds data. The ANSI C standard, on the
other hand, specifies that the meaning of a program is un-
defined if it uses pointer arithmetic or other means to access
data outside of the block boundaries. In practice, most C
implementations do not check for out of bounds accesses,
leaving C programs vulnerable to data structure corruption
errors that occur when an out of bounds access to one block
corrupts data stored in another block. Because the effect

of these kinds of errors is so dependent on aspects of the
implementation (such as the layout of the data structures in
memory) that are outside of the basic programming model
of the language, they can be extremely difficult to reproduce
and eliminate. And because they can corrupt language im-
plementation structures such as return addresses and func-
tion pointers, they often leave the program vulnerable to
buffer overflow attacks, which attackers can exploit to inject
and execute arbitrary code over the network.

In this paper we present a different approach, boundless
memory blocks, to out of bounds accesses. We generate
code that checks all accesses, but instead of allowing out of
bounds accesses to corrupt other data structures or respond-
ing to out of bounds accesses by throwing an exception, the
generated code takes actions that allow the program to con-
tinue to execute without interruption. Specifically, it stores
the values of out of bounds writes in a hash table indexed
under the written address (expressed as an offset relative
to an identifier for the written block). It can then return
the stored value as the result of out of bounds reads to that
address. It simply returns a default value for out of bounds
reads that access uninitialized addresses.

Conceptually, our technique gives each memory block un-
bounded size. The initial memory block size can therefore
be seen not as a hard boundary that the programmer must
get right for the program to execute correctly, but rather
as a flexible hint to the implementation of the amount of
memory that the programmer may expect the program to
use in common cases.

We have developed a C compiler that implements bound-
less memory blocks and used this compiler to generate code
for a collection of widely used server programs drawn from
the open-source Linux community. As documented at se-
curity tracking web sites such as www.securityfocus.com

and www.securiteam.com, all of these programs have secu-
rity vulnerabilities related to out of bounds accesses such
as buffer overflow errors. Our results show that the use of
boundless memory blocks makes these programs invulnera-
ble to these security vulnerabilities and that the overhead
associated with using boundless memory blocks is accept-
able in practice.

Note that boundless memory blocks have the potential to
introduce a new denial of service security vulnerability: the
possibility that an attacker may be able to produce an input
that will cause the program to generate a very large number
of out of bounds writes and therefore consume all of the
available memory. We address this problem by treating the
hash table that stores out of bounds writes as a fixed-size

least recently used (LRU) cache. This bounds the amount
of memory that an attacker can cause out of bounds writes
to consume.

This paper makes the following contributions:

• Boundless Memory Blocks: It introduces the con-
cept of using boundless memory blocks to eliminate
problems (security errors, data structure corruption,
premature program termination due to thrown excep-
tions) currently caused by fixed-size memory blocks.

• Implementation: It shows how to implement bound-
less memory blocks in a compiler that is capable of
generating code for unmodified legacy C programs.

• Evaluation: We evaluate how well boundless mem-
ory blocks work in practice by generating versions of
widely used open source server programs. Our results
show that boundless memory blocks make these pro-
gram invulnerable to security vulnerabilities (such as
buffer overflows) caused by out of bounds memory ac-
cesses and that the overhead of using boundless mem-
ory blocks is acceptable for this set of programs.

2. EXAMPLE
We next present a simple example that illustrates how

computations with boundless memory blocks operate. Fig-
ure 1 presents a (somewhat simplified) version of a procedure
from the Mutt mail client discussed in Section 4.4. This pro-
cedure takes as input a string encoded in the UTF-8 format
and returns as output the same string encoded in modified
UTF-7 format. This conversion may increase the size of the
string; the problem is that the procedure fails to allocate
sufficient space in the return string for the worst-case size
increase. Specifically, the procedure assumes a worst-case
increase ratio of 2; the actual worst-case ratio is 7/3. When
passed (the very rare) inputs with large increase ratios, the
procedure attempts to write beyond the end of its output
array.

With standard compilers, these writes succeed, corrupt
the address space, and the program crashes with a segmen-
tation violation. To eliminate the possibility of this kind
of corruption, researchers have developed safe-C compilers
that generate code that dynamically checks for and inter-
cepts out of bounds accesses. With such compilers, Mutt
exits with an out of bounds access error and does not even
start the user interface. With boundless memory blocks, the
program stores the additional writes away in a hash table,
enabling the mail server to correctly translate the string and
continue to execute correctly.

This example illustrates two key aspects of using bound-
less memory blocks:

• Subtle Errors: To successfully specify a hard limit
for each memory block, the programmer must reason
about how all executions of the program can possibly
access memory. The difficulty of performing this rea-
soning means that, in practice, real-world programs
often contain subtle memory errors that can be very
difficult to detect by either testing or code inspection,
and these errors can have significant negative conse-
quences for the program and its users.

• Different Aspects of Correctness: The fact that
the programmer has failed to correctly compute the

static char *utf8_to_utf7 (const char *u8, size_t u8len) {
char *buf, *p;
int ch, int n, i, b = 0, k = 0, base64 = 0;

/* The following line allocates the return string.
The allocated string is too small; instead of
u8len * 2 +1, a safe length would be u8len * 4 + 1

*/
p = buf = safe_malloc (u8len * 2 + 1);

while (u8len) {
unsigned char c = *u8;
if (c < 0x80) ch = c, n = 0;
else if (c < 0xc2) goto bail;
else if (c < 0xe0) ch = c & 0x1f, n = 1;
else if (c < 0xf0) ch = c & 0x0f, n = 2;
else if (c < 0xf8) ch = c & 0x07, n = 3;
else if (c < 0xfc) ch = c & 0x03, n = 4;
else if (c < 0xfe) ch = c & 0x01, n = 5;
else goto bail;

u8++, u8len--;
if (n > u8len) goto bail;
for (i = 0; i < n; i++) {

if ((u8[i] & 0xc0) != 0x80) goto bail;
ch = (ch << 6) | (u8[i] & 0x3f);

}
if (n > 1 && !(ch >> (n * 5 + 1))) goto bail;
u8 += n, u8len -= n;

if (ch < 0x20 || ch >= 0x7f) {
if (!base64) {

*p++ = ’&’;
base64 = 1;
b = 0;
k = 10;

}
if (ch & ~0xffff) ch = 0xfffe;
*p++ = B64Chars[b | ch >> k];
k -= 6;
for (; k >= 0; k -= 6)

*p++ = B64Chars[(ch >> k) & 0x3f];
b = (ch << (-k)) & 0x3f;
k += 16;

} else {
if (base64) {

if (k > 10) *p++ = B64Chars[b];
*p++ = ’-’;
base64 = 0;

}
*p++ = ch;
if (ch == ’&’) *p++ = ’-’;

}
}

if (base64) {
if (k > 10) *p++ = B64Chars[b];
*p++ = ’-’;

}

*p++ = ’\0’;
safe_realloc ((void **) &buf, p - buf);
return buf;

bail:
safe_free ((void **) &buf);
return 0;

}

Figure 1: String Encoding Conversion Procedure

maximum possible size of the memory block does not
mean that the program as a whole is incorrect. In
fact, as this example illustrates, the rest of the com-
putation can be completely correct once it is provided
with conceptually unbounded memory blocks.

3. IMPLEMENTATION
We have implemented boundless memory blocks for legacy

C programs. Our implementation builds on an existing safe-
C compiler [38]. Such compilers maintain enough infor-
mation to perform (a combination of dynamic and static)
checks to recognize out of bounds memory accesses. When
the program attempts to perform such an access, the gener-
ated code flags the error and terminates the program. The
basic idea behind our implementation is to modify the gen-
erated code so that, instead of terminating the execution, it
stores out of bounds writes in a hash table and implements
out of bounds reads by fetching the stored values from the
hash table. There are two primary issues, both of which
relate to the representation of pointers:

• Information Content: Most safe-C compilers change
the representation of pointers to enable the generated
code to distinguish in bounds and out of bounds point-
ers [34]. Some representations use a single error token
to represent all out of bounds pointers. Such repre-
sentations are unsuitable for the implementation of
boundless memory blocks since they do not maintain
enough information to enable the generated code to
identify the memory block and offset of the out of
bounds pointer. Our compiler therefore uses a pointer
representation that maintains enough information to
retrieve the memory block and offset for each out of
bounds pointer.

• Memory Layout: Some safe-C compilers change the
size of the pointer representation, which in turn changes
the memory layout of the legacy C program. We de-
cided to build on a safe-C compiler that leaves the
memory layout intact, in part because this enables us
to support a larger range of legacy C programs.

Our compiler generates two kinds of code: checking code
and continuation code. The checking code detects out of
bounds accesses; the continuation code accesses the hash
table and executes when the checking code detects an out
of bounds access.

3.1 Checking Code
Our implementation uses a checking scheme originally de-

veloped by Jones and Kelly [28] and then significantly en-
hanced by Ruwase and Lam [38]. The scheme is currently
implemented as a modification to the GNU C compiler (gcc).
Jones and Kelly’s scheme maintains a table that maps lo-
cations to data units (each struct, array, and variable is a
data unit). It uses this table to track intended data units
and distinguish in-bounds from out-of-bounds pointers as
follows:

• Base Case: A base pointer is the address of an array,
struct or variable allocated on the stack or heap, or
the value returned by malloc. All base pointers are in
bounds. The intended data unit of the base pointer is
the corresponding array, struct, variable, or allocated
block of memory to which it refers.

• Pointer Arithmetic: All pointer arithmetic expres-
sions contain a starting pointer (for example, a pointer
variable or the name of a statically allocated array)
and an offset. We say that the value of the expres-
sion is derived from the starting pointer. A derived
pointer is in bounds if and only if the corresponding
starting pointer is in bounds and the derived pointer
points into the same data unit as the starting pointer.
Regardless of where the starting and derived pointers
point, they have the same intended data unit.

• Pointer Variables: A pointer variable is in bounds
if and only if it was assigned to an in-bounds pointer.
It has the same intended data unit as the pointer to
which it was assigned.

Jones and Kelly distinguish a valid out-of-bounds pointer,
which points to the next byte after its intended data unit,
from an invalid out-of-bounds pointer, which points to some
other address not in its intended data unit. They imple-
ment this distinction by padding each data item with an
extra byte. A valid out-of-bounds pointer points to this ex-
tra byte; all invalid out-of-bounds pointers have the value
ILLEGAL (-2). This distinction supports code that uses
valid out-of-bounds pointers in the termination condition of
loops that use pointer arithmetic to scan arrays. Finally,
Jones and Kelly instrument the code to check the status of
each pointer before it dereferences it; attempting to deref-
erence an out-of-bounds pointer causes the program to halt
with an error.

Jones and Kelly’s scheme does not support programs that
first use pointer arithmetic to obtain a pointer to a location
past the end of the intended data unit, then use pointer
arithmetic again to jump back into the intended data unit
and access data stored in this data unit. While the behav-
ior of programs that do this is undefined according to the
ANSI C standard, in practice many C programs use this
technique [38]. Ruwase and Lam’s extension uses an out-of-
bounds objects (OOBs) to support such behavior [38].

As in standard C compilation, in-bounds pointers refer di-
rectly into their intended data unit. Whenever the program
computes an out-of-bounds pointer, Ruwase and Lam’s en-
hancement generates an OOB object that contains the start-
ing address of the intended data unit and the offset from the
start of that data unit. Instead of pointing off to some arbi-
trary memory location outside of the intended data unit or
containing the value ILLEGAL (-2), the pointer points to
the OOB object. The generated code checks pointer deref-
erences for the presence of OOB objects and uses this mech-
anism to halt the program if it attempts to dereference an
out-of-bounds pointer. The generated code also uses OOB
objects to precisely track data unit offsets and appropriately
translate pointers derived from out-of-bounds pointers back
into the in-bounds pointer representation if the new pointer
jumps back inside the intended data unit. In practice, this
enhancement significantly increases the range of programs
that can execute without terminating because of a failed
memory error check [38]. This extension also has the crucial
property that, unlike the Jones and Kelly scheme, it main-
tains enough information to determine the memory block
and offset for each out of bounds pointer.

3.2 Continuation Code
Our implementation of the write continuation code stores

the written value in a hash table indexed under the memory
block and offset of the write. For out of bounds reads it
looks up the accessed memory block and offset and returns
the stored value if it is present in the hash table. If there is
no indexed value, it returns a default value.

To avoid memory leaks, it is necessary to manage the
memory used to store out of bounds writes in the hash ta-
ble. Our implementation devotes a fixed amount of memory
to the hash table, in effect turning the hash table into a
cache of out of bounds writes. We use a least recently used
replacement policy. It is possible for this policy to lead to
a situation in which an out of bounds read attempts to ac-
cess a discarded write entry. Our experimental results show
that the distance (measured in out of bounds memory ac-
cesses) between successive accesses to the same entry in the
hash table is relatively small and that our set of applications
never attempts to access a discarded write entry. We chose
to use a fixed size cache (instead of some other data struc-
ture that attempts to store all out of bounds writes until
the program deallocates the corresponding memory blocks)
to eliminate the possibility of denial of service attacks that
cause the program to exhaust the available memory by gen-
erating and storing a very large number of out of bounds
writes.

Our basic philosophy views out of bounds accesses not
as errors but as normal, although uncommon, events in the
execution of the program. We acknowledge, however, that
programmers may wish to be informed of out of bounds
accesses so that they can increase the size of the accessed
memory block or change the program to eliminate the out
of bounds accesses. Our compiler can therefore optionally
augment the generated code to produce a log that identifies
each out of bounds access. Programmers can use this log to
locate and eliminate out of bounds accesses.

4. EXPERIENCE
We implemented a compiler that generates code for bound-

less memory blocks and obtained several widely-used open-
source programs with out of bounds memory accesses. Many
of these programs are key components of the Linux-based
open-source interactive computing environment; many of
the out of bounds accesses in these programs correspond
to exploitable buffer overflow security vulnerabilities.

4.1 Methodology
We evaluate the behavior of three different versions of

each program: the Standard version compiled with a stan-
dard C compiler (this version is vulnerable to any out of
bounds accesses that the program may contain), the Check
version compiled with the CRED safe-C compiler [38] (this
version terminates the program with an error message at
the first out of bounds access), and the Boundless version
compiled with our compiler (this compiler generates code to
store out of bounds writes in a hash table and return the
values for corresponding out of bounds reads). We evaluate
three aspects of each program’s behavior:

• Security and Resilience: We chose a workload with
an input that triggers known out of bounds mem-
ory accesses; this input typically exploits a security
vulnerability as documented by vulnerability-tracking

organizations such as Security Focus [11] and Secu-
riTeam [10]. We observe the behavior of the different
versions on this workload, focusing on how the differ-
ent programs execute after the out of bounds accesses.

• Performance: We chose a workload that both the
Standard and Boundless versions can execute success-
fully. We use this workload to measure the request
processing time, or the time required for each version
to process representative requests. We obtain this time
by instrumenting the program to record the time when
it starts processing the request and the time when it
stops processing the request, then subtracting the start
time from the stop time.

• Standard Usage: When possible, we use the Bound-
less version of each program as part of our normal com-
putational environment. During this deployment we
present the program with a workload intended to sim-
ulate standard usage; we also ensure that the workload
contains attacks that trigger out of bounds accesses in
each program. We focus on the acceptability of the
continued execution of the Boundless version of the
deployed program.

We ran all the programs on a Dell workstation with two
2.8 GHz Pentium 4 processors, 2 GBytes of RAM, and run-
ning Red Hat 8.0 Linux.

4.2 Sendmail
Sendmail is the standard mail transfer agent for Linux and

other Unix systems [13]. It is typically configured to run as
a daemon which creates a new process to service each new
mail transfer connection. This process executes a simple
command language that allows the remote agent to transfer
email messages to the Sendmail server, which may deliver
the messages to local users or (if necessary) forward some
or all of the messages on to other Sendmail servers. Ver-
sions of Sendmail earlier than 8.11.7 and 8.12.9 (8.11 and
8.12 are separate development threads) have a memory er-
ror vulnerability which is triggered when a remote attacker
sends a carefully crafted email message through the Send-
mail daemon [12]. When Sendmail processes the message,
the memory error causes it to execute the injected code in
the message. The injected code executes with the same per-
missions as the Sendmail server (typically root).

4.2.1 Security and Resilience
We worked with Sendmail version 8.11.6. The Standard

version of Sendmail executes the out of bounds writes and
corrupts its call stack. The Check version is apparently dis-
abled by a memory error that occurs whenever the Send-
mail daemon wakes up to check for incoming messages. The
Boundless version is not vulnerable to the attack — it stores
the out of bounds writes in the hash table and executes
through the memory error triggered by the attack to con-
tinue to successfully process subsequent Sendmail commands.

4.2.2 Performance
Figure 2 presents the request processing times for the

Standard and Boundless versions of Sendmail. All times are
given in milliseconds. The Receive Small request receives a
message whose body is 4 bytes long; the Send Small request
sends the same message. The Receive Large request receives

a message whose body is 4 Kbytes long; the Send Large re-
quest sends the same message. We performed each request
at least twenty times and report the means and standard
deviations of the request processing times.

Request Standard Boundless Slowdown
Receive Small 15.6 ± 2.9% 72.9 ± 2.1% 4.7
Receive Large 16.8 ± 4.3% 77.9 ± 0.6% 4.6
Send Small 20.4 ± 3.3% 86.7 ± 2.4% 4.2
Send Large 21.5 ± 5.7% 88.8 ± 1.9% 4.1

Figure 2: Request Processing Times for Sendmail
(milliseconds)

4.2.3 Standard Usage
For our standard usage workload, we installed the Bound-

less version of Sendmail on one of our machines and used it
to process a set of one thousand messages, composed of 960
valid messages and 40 attack messages (we sent one attack
message before every 24 valid messages). On this workload,
Sendmail successfully executes through the memory errors
and correctly processes all the messages.

Our memory error logs indicate that Sendmail generates a
steady stream of memory errors during its normal execution.
In particular, every time the Sendmail daemon wakes up to
check for work, it generates a memory error. We logged
12,017 out of bounds memory accesses. All of the out of
bounds reads access values which had been previously stored
in the hash table.

4.3 Pine
Pine is a widely used mail user agent (MUA) that is dis-

tributed with the Linux operating system [9]. Pine allows
users to read mail, fetch mail from an IMAP server, compose
and forward mail messages, and perform other email-related
tasks. We use Pine 4.44, which is distributed with Red Hat
Linux version 8.0. This version of Pine has out of bounds
accesses associated with a failure to correctly parse certain
legal From fields [8].

4.3.1 Security and Resilience
Our security and resilience workload contains an email

message with a From field that triggers this memory error.
This workload causes the Standard version to corrupt its
heap and abort. The Check version detects the memory
error and terminates the computation with an error message
identifying the error. With both of these versions, the user
is unable to use Pine to read mail because Pine aborts or
terminates during initialization as the mail file is loaded and
before the user has a chance to interact with the program.
The user must manually eliminate the From field from the
mail file (using some other mail reader or file editor) before
he or she can use Pine. While the Check version protects
the user against injected code attacks, it prevents the user
from using Pine to read mail as long as the mail file contains
the problematic From field.

The Boundless version, on the other hand, continues to
execute through the out of bounds accesses to enable the
user to process their mail. This version processed all of our
workloads without errors.

4.3.2 Performance
Figure 3 presents the request processing times for the

Standard and Boundless versions of Pine. All times are
given in milliseconds. The Read request displays a selected
empty message, the Compose request brings up the user in-
terface to compose a message, and the Move request moves
an empty message from one folder to another. We performed
each request at least twenty times and report the means and
standard deviations of the request processing times.

Request Standard Boundless Slowdown
Read 0.287 ± 7.1% 2.19 ± 1.7% 7.6
Compose 0.385 ± 4.3% 3.44 ± 1.8% 8.9
Move 1.34 ± 10.4% 1.90 ± 10.0% 1.4

Figure 3: Request Processing Times for Pine
(milliseconds)

As these numbers indicate, the Boundless version is sub-
stantially slower than the Standard version for the Read
and Compose requests. However, because Pine is an inter-
active program, its performance is acceptable as long as it
feels responsive to its users. Assuming a pause perceptibil-
ity threshold of 100 milliseconds for this kind of interactive
program [18], it is clear that the application of boundless
memory blocks should not degrade the program’s interac-
tive feel. Our subjective experience confirms this expecta-
tion: all pause times are imperceptible for all versions.

4.3.3 Standard Usage
For our standard usage workload, we used the Boundless

version of Pine intensively for one hour to read e-mail, reply
to e-mails, forward e-mails, and manage e-mail folders. To
test Pine’s ability to successfully execute through errors, we
also periodically sent ourselves an email that triggered the
memory error discussed above in Section 4.3.1. During this
usage period, the Boundless version executed successfully
through all errors to perform all requests flawlessly. We
configured this version of Pine to generate a memory error
log file. We logged 129 out of bounds accesses. Of these
out of bounds accesses, 91 modified the accessed memory
location and 38 did not modify the accessed location. All of
these latter 38 accesses accessed locations previously stored
in the hash table.

4.4 Mutt
Mutt is a customizable, text-based mail user agent that

is widely used in the Unix system administration commu-
nity [6]. It is descended from ELM [2] and supports a variety
of features including email threading and correct NFS mail
spool locking. We used Mutt version 1.4. As described at [5]
and discussed in Section 2, this version is vulnerable to an
attack that exploits a memory error in the conversion from
UTF-8 to UTF-7 string formats. We were able to develop
an attack that exploited this vulnerability. It is possible
for a remote IMAP server to use this attack to crash Mutt;
it may also be possible for the IMAP server to exploit the
vulnerability to inject and execute arbitrary code.

4.4.1 Security and Resilience
We configured our security and resilience workload to ex-

ploit the security vulnerability described above. On this
workload, the Standard version of Mutt exits with a segmen-
tation fault before the user interface comes up; the Check

version exits with a memory error before the user interface
comes up. The memory error is triggered by a carefully
crafted mail folder name; when the Boundless version exe-
cutes, it generates an error message indicating that the mail
folder does not exist, then continues to execute to allow the
user to successfully process mail from other folders.

4.4.2 Performance
Figure 4 presents the request processing times for the

Standard and Boundless versions of Mutt. All times are
given in milliseconds. The Read request reads a selected
empty message and the Move request moves an empty mes-
sage from one folder to another. We performed each request
at least twenty times and report the means and standard
deviations of the request processing times.

Request Standard Boundless Slowdown
Read .655 ± 4.3% 2.71 ± 2.3% 4.1
Move 6.94 ± 6.2% 9.91 ± 5.9% 1.4

Figure 4: Request Processing Times for Mutt
(milliseconds)

Because Mutt is an interactive program, its performance is
acceptable as long as it feels responsive to its users. These
performance results make it clear that the application of
boundless computing to this program should not degrade
its interactive feel. Our subjective experience confirms this
expectation: all pause times are imperceptible for both the
Standard and Boundless versions.

4.4.3 Standard Usage
For our standard usage workload, we used the Boundless

version of Mutt intensively for half an hour to process email
messages. During this time, we triggered the security vul-
nerability described above twice. Mutt successfully executed
through the resulting memory errors to correctly execute all
of our requests. We were able to read, forward, and com-
pose mail with no problems even after executing through
the memory error.

An examination of the memory error log indicates that
all of the memory errors were caused by the security vulner-
ability. We logged 38 out of bounds accesses, all of which
were writes.

4.5 Midnight Commander
Midnight Commander is an open source file management

tool that allows users to browse files and archives, copy files
from one folder to another, and delete files [4]. Midnight
Commander is vulnerable to a memory-error attack associ-
ated with accessing an uninitialized buffer when processing
symbolic links in tgz archives [3]. We used Midnight Com-
mander version 4.5.55 for our experiments.

4.5.1 Security and Resilience
Our security and resilience workload contains a tgz archive

designed to exploit this vulnerability. On this workload, the
Standard version terminates with a segmentation violation
when the user attempts to open the problematic tgz archive.
The Check version terminates with an error message.

The Boundless version, on the other hand, executes through
the memory errors to correctly display the names of the two
symbolic links in the archive. It continues on to correctly
execute additional user commands; in particular, the user

can continue to use Midnight Commander to browse, copy,
or delete other files even after processing the problematic
tgz archive.

4.5.2 Performance
Figure 5 presents the request processing times for the

Standard and Boundless versions of Midnight Commander.
All times are given in milliseconds. The Copy request copies
a 31Mbyte directory structure, the Move request moves a
directory of the same size, the MkDir request makes a new
directory, and the Delete request deletes a 3.2 Mbyte file.
We performed each request at least twenty times and report
the means and standard deviations of the request processing
times.

Request Standard Boundless Slowdown
Copy 377 ± 0.71% 556 ± 1.54% 1.5
Move 0.30 ± 2.45 % 0.424 ± 1.69% 1.4
MkDir 0.69 ± 7.05% 1.40 ± 7.78% 2.0
Delete 2.54 ± 11.26% 2.94 ± 14.6% 1.2

Figure 5: Request Processing Times for Midnight
Commander (milliseconds)

As these numbers indicate, the Boundless version is not
dramatically slower than the Standard version. Moreover,
because Midnight Commander is an interactive program, its
performance is acceptable as long as it feels responsive to
its users, and these performance results make it clear that
the application of boundless memory blocks to this program
should not degrade its interactive feel. Our subjective expe-
rience confirms this expectation: all pause times are imper-
ceptible for both the Standard and Boundless versions.

4.5.3 Standard Usage
For our standard usage workload, we used the Boundless

version of Midnight Commander intensively for one hour.
During this session, we copied, moved, browsed, and searched
files, and we created and deleted directories. We periodically
triggered the memory error discussed above by entering the
problematic tgz file. We configured this version to gener-
ate an error log. This log shows that Midnight Commander
has a memory error that is triggered whenever a blank line
occurs in its configuration file. We verified that this error
completely disabled the Check version until we removed the
blank lines. The Boundless version, on the other hand, ex-
ecuted successfully through all memory errors to perform
flawlessly for all requests.

During our one hour session, we logged a total of 16,788
out of bounds accesses, of which 5,462 were reads to unini-
tialized locations. As we will discuss in Section 4.7, Midnight
Commander is the only benchmark that contains reads to lo-
cations that were not previously written by a corresponding
out of bounds write. All of the out of bounds reads in all of
our other benchmarks access locations that were previously
stored in the hash table.

4.6 Apache
The Apache HTTP server is the most widely used web

server in the world; a recent survey found that 64% of the
web sites on the Internet use Apache [7]. The Apache 2.0.47
mod alias implementation contains a vulnerability that, un-
der certain circumstances, allows a remote attacker to trig-
ger a memory error [1].

4.6.1 Security and Resilience
Our security and resilience workload contains a request

that exploits the security vulnerability described above. The
Apache server maintains a pool of child processes; each re-
quest is handled by a child process assigned to service the
connection carrying the request [35].

With Standard compilation, the child process terminates
with a segmentation violation when presented with the at-
tack. The Apache parent process then creates a new child
process to take its place. The Check version correctly pro-
cesses legitimate requests without memory errors until it is
presented with the attack. At this point the child process
serving the connection detects the error and terminates. The
parent Apache process then creates a new child process to
take its place. In the Boundless version, the child process
executes successfully through the attack to correctly process
subsequent requests.

Because Apache isolates request processing inside a pool
of regenerating processes, the Check version eliminates the
security vulnerability while enabling the server to process
subsequent requests. The overhead of killing and restarting
child processes, however, makes this version vulnerable to
an attack that ties up the server by repeatedly presenting it
with requests that trigger the error.

4.6.2 Performance
Figure 5 presents the request processing times for the

Standard and Boundless versions of Apache. All times are
given in milliseconds. The Small request serves an 5KByte
page (this is the home page for our research project); the
large request serves an 830KByte file used only for this ex-
periment. Both requests were local — they came from the
same machine on which Apache was running. We performed
each request at least twenty times and report the means and
standard deviations of the request processing times. These
numbers indicate that the use of boundless memory blocks
in this context entails a negligible slowdown, for both small
and large requests.

Request Standard Boundless Slowdown
Small 44.4 ± 1.3% 46.8 ± 1.1% 1.05
Large 48.7 ± 1.8% 50.2 ± 3.9% 1.03

Figure 6: Request Processing Times for Apache
(milliseconds)

4.6.3 Standard Usage
For our standard usage workload, we used the Bound-

less version of Apache to serve the web site of our research
project (www.flexc.csail.mit.edu). For one hour, we re-
quested files from this web site, periodically presenting the
web server with requests that triggered the vulnerability dis-
cussed above. The Boundless version executed successfully
through all of these attacks to continue to successfully ser-
vice legitimate requests. During our one hour session, we
logged a total of 347 out of bounds accesses. All of the
out of bounds reads retrieved values which were previously
stored in the hash table.

In addition to this workload, we used the Boundless ver-
sion for one week to serve all requests directed to our re-
search project’s web site. This web site was in more or
less steady use throughout this time period; we measured
approximately 400 requests a day from outside our institu-

tion. We also generated tens of thousands of requests from
another local machine, all of which were served correctly.

During this time period we periodically presented the web
server with requests that triggered the vulnerability dis-
cussed above. The Boundless version executed successfully
through all of these attacks to continue to successfully ser-
vice legitimate requests. We observed no anomalous behav-
ior and received no complaints from the users of the web
site.

4.7 Discussion
Our results show that boundless memory blocks enable

our programs to execute through memory-error based at-
tacks to successfully process subsequent requests. Even un-
der very intensive workloads the Boundless versions pro-
vided completely acceptable results. We stress that we chose
the programs in our study largely based on several factors:
the availability of source code, the popularity of the ap-
plication, the presence of known memory errors as docu-
mented on vulnerability-tracking web sites such as Security
Focus [11] and SecuriTeam [10], and our ability to reproduce
the documented memory errors. In all of the programs that
we tested, Boundless computing successfully eliminates the
negative consequences of the error — the programs were,
without exception, invulnerable to known security attacks
and able to execute through the corresponding memory er-
rors to continue to successfully process their normal work-
load. These results provide encouraging evidence that the
use of boundless memory blocks can go a long way towards
eliminating out of bounds accesses as a source of security
vulnerabilities and fatal programming errors.

One interesting aspect of our results is that although our
programs generated out of bounds read accesses, in only one
of these programs did any of these accesses read uninitialized
values that were not previously written by a corresponding
out of bounds write. This result indicates that developers
are apparently more likely to incorrectly calculate a correct
size for an accessed memory block (or fail to include a re-
quired bounds check) than they are to produce a program
that incorrectly reads an uninitialized out of bounds mem-
ory location.

5. RELATED WORK
We discuss related work in the areas of continued execu-

tion in the face of memory errors, memory-safe program-
ming language implementations, traditional error recovery,
and data structure repair.

5.1 Memory Errors and Continued Execution
Boundless memory blocks enable the program to continue

to execute through memory errors. We have also developed
a technique, called failure-oblivious computing, which simply
discards out of bounds writes and manufactures values to re-
turn as the result of out of bounds reads [36]. Even though
this technique has the potential to take the program down an
unanticipated execution path, in practice it enables servers
to execute through memory errors (such as buffer overflows)
and continue on to correctly serve subsequent requests. An-
other approach responds to memory errors by terminating
the enclosing function and continuing on to execute the code
immediately following the corresponding function call [40].
The results indicate that, in many cases, the program can
continue on to execute acceptably after the premature func-

tion termination. These techniques differ from boundless
memory blocks in that they are designed to convert incor-
rect and dangerous execution paths into unanticipated but
acceptable execution paths. Boundless memory blocks, of
course, can convert incorrect execution paths into correct
and anticipated execution paths.

5.2 Safe-C Compilers
Our work builds on previous research into implementing

memory-safe versions of C [15, 43, 34, 27, 38, 28]. As de-
scribed in Section 3, our implementation uses techniques
originally developed by Jones and Kelly [28], then signif-
icantly refined by Ruwase and Lam [38]. Memory-safe C
compilers can use a variety of techniques for detecting out
of bounds memory accesses via pointers; all of these tech-
niques modify the representation of pointers in some way as
compared to standard C compilers. To implement boundless
memory blocks it is essential that the pointer representation
preserve the memory block and offset information for out of
bounds pointers.

It is also feasible to implement boundless memory blocks
for safe languages such as Java or ML by simply replacing
the generated code that throws an exception in response
to an out of bounds access. The new generated code, of
course, would store out of bounds writes in the hash table
and appropriately retrieve the stored value for out of bounds
reads.

5.3 Traditional Error Recovery
The traditional error recovery mechanism is to reboot the

system, with repair applied during the reboot if necessary to
bring the system back up successfully [23]. Mechanisms such
as fast reboots [39], checkpointing [30, 31], and partial sys-
tem restarts [17] can improve the performance of the reboot
process. Hardware redundancy is the standard solution for
increased availability.

Boundless memory blocks differ in that they are designed
to convert erroneous executions into correct executions. The
advantages include better availability because of the elimi-
nation of down time and the elimination of vulnerabilities
to persistent errors — restarting Pine as described in Sec-
tion 4.3, for example, does not enable the user to read mail
if the mail file still contains a problematic mail message.

5.4 Manual Error Detection and Recovery
Motivated in part by the need to avoid rebooting, re-

searchers have developed more fine-grain error recovery mech-
anisms. The Lucent 5ESS switch and the IBM MVS operat-
ing system, for example, both contain software components
that detect and attempt to repair inconsistent data struc-
tures [26, 33, 24]. Other techniques include failure recovery
blocks and exception handlers, both of which may contain
hand-coded recovery algorithms [32].

The successful application of these techniques requires the
programmer to anticipate some aspects of the error and,
based on this understanding, develop an appropriate recov-
ery strategy. Boundless memory blocks, on the other hand,
can be applied without programmer intervention to any sys-
tem to completely eliminate memory block size calculation
errors.

Data structure repair [20] occupies a middle ground. Like
more traditional error detection and recovery techniques,
it requires the programmer to provide some application-

specific information (in the case of data structure repair, a
data structure consistency specification). But because there
is no explicit recovery procedure and because the consistency
specification is not tied to specific blocks of code, data struc-
ture repair may enable systems to more effectively recover
from unanticipated data structure corruption errors.

5.5 Static Analysis and Program Annotations
It is also possible to attack the memory error problem

directly at its source: a combination of static analysis and
program annotations should, in principle, enable program-
mers to deliver programs that are completely free of memory
errors [22, 21, 42, 37]. All of these techniques share the same
advantage (a static guarantee that the program will not ex-
hibit a specific kind of memory error) and drawbacks (the
need for programmer annotations or the possibility of con-
servatively rejecting safe programs). Even if the analysis is
not able to verify that the entire program is free of memory
errors, it may be able to statically recognize some accesses
that will never cause a memory error, remove the dynamic
checks for those accesses, and thereby reduce the dynamic
checking overhead.

Researchers have also developed unsound, incomplete anal-
yses that heuristically identify potential errors [41, 16]. The
advantage is that such approaches typically require no an-
notations and scale better to larger programs; the disadvan-
tage is that (because they are unsound) they may miss some
genuine memory errors.

5.6 Buffer Overflow Detection Tools
Researchers have developed techniques that are designed

to detect buffer overflow attacks after they have occurred,
then halt the execution of the program before the attack can
take effect. StackGuard [19] and StackShield [14] modify the
compiler to generate code to detect attacks that overwrite
the return address on the stack; StackShield also performs
range checks to detect overwritten function pointers.

It is also possible to apply buffer overflow detection di-
rectly to binaries. Purify instruments the binary to detect
a range of memory errors, including out of bounds memory
accesses [25]. Program shepherding uses an efficient binary
interpreter to prevent an attacker from executing injected
code [29].

A key difference between these techniques and boundless
memory blocks is that boundless memory blocks prevent
the attack from performing out of bounds writes that cor-
rupt the address space. These writes instead are redirected
into the hash table that holds the out of bounds writes. Of
course, our implementation of boundless memory blocks also
generates a log file that identifies all out of bounds accesses,
enabling the programmer to go back and update the code
to eliminate such accesses if desired.

5.7 Extensible Arrays
Many languages provide extensible array data structures,

which dynamically grow to accommodate elements stored
at arbitrary offsets. Boundless memory blocks are, in effect,
an implementation of extensible arrays. They differ from
standard extensible arrays in their tight integration with
the C programming language (especially the preservation
of the address space from the original legacy implementa-
tion). This integration forces the compiler to make large
scale changes to the generated code to perform the required

checks and integrate effectively with the low-level packages
that maintain information about out of bounds pointers and
accesses.

6. CONCLUSION
Memory errors are an important source of program fail-

ures and security vulnerabilities. This paper shows how to
automatically convert legacy C programs to use (concep-
tually) boundless memory blocks. This conversion elimi-
nates memory errors associated with out of bounds reads
and writes and, as our results indicate, make the program
invulnerable to buffer overflow attacks that exploit these er-
rors. The measured overhead of applying our technique is
acceptable for the widely used open source server programs
that we tested.

Acknowledgements
This research was supported in part by the Singapore-MIT
Alliance and NSF grant CCR00-86154, NSF grant CCR00-
63513, NSF grant CCR00-73513, NSF grant CCR-0209075,
NSF grant CCR-0341620, and NSF grant CCR-0325283.

7. REFERENCES

[1] Apache HTTP Server exploit.
http://securityfocus.com/bid/8911/discussion/.

[2] ELM. http://www.instinct.org/elm/.

[3] Midnight Commander exploit.
http://www.securityfocus.com/bid/8658/discussion/.

[4] Midnight Commander website. http://www.ibiblio.org/mc/.

[5] Mutt exploit.
http://www.securiteam.com/unixfocus/5FP0T0U9FU.html.

[6] Mutt website. http://www.mutt.org.

[7] Netcraft website.
http://news.netcraft.com/archives/web server survey.html.

[8] Pine exploit.
http://www.securityfocus.com/bid/6120/discussion.

[9] Pine website. http://www.washington.edu/pine/.

[10] SecuriTeam website. http://www.securiteam.com.

[11] Security Focus website. http://www.securityfocus.com.

[12] Sendmail exploit.
http://www.securityfocus.com/bid/7230/discussion/.

[13] Sendmail website. www.sendmail.org.

[14] Stackshield. http://www.angelfire.com/sk/stackshield.

[15] T. Austin, S. Breach, and G. Sohi. Efficient detection of all
pointer and array access errors. In Proceedings of the ACM
SIGPLAN ’94 Conference on Programming Language Design
and Implementation, June 2004.

[16] W. Bush, J. Pincus, and D. Sielaff. A static analyzer for finding
dynamic, programming errors. Software - Practice and
Experience, 2000.

[17] G. Candea and A. Fox. Recursive restartability: Turning the
reboot sledgehammer into a scalpel. In Proceedings of the 8th
Workshop on Hot Topics in Operating Systems
(HotOS-VIII), pages 110–115, Schloss Elmau, Germany, May
2001.

[18] S. Card, T. Moran, and A. Newell. The Psychology of
Human-Computer Interaction. Lawrence Erlbaum Associates,
1983.

[19] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie,
A. Grier, P. Wagle, Q. Zhang, and H. Hinton. StackGuard:
Automatic Adaptive Detection and Prevention of
Buffer-Overflow Attacks. In Proceedings of the 7th USENIX
Security Conference, January 1998.

[20] B. Demsky and M. Rinard. Automatic Detection and Repair of
Errors in Data Structures. In Proceedings of the 18th Annual
ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications,
October 2003.

[21] D. Dhurjati, S. Kowshik, V. Adve, and C. Lattner. Memory
safety without runtime checks or garbage collection. In

Proceedings of the 2003 Workshop on Languages, Compilers,
and Tools for Embedded Systems (LCTES’03), June 2003.

[22] N. Dor, M. Rodeh, and M. Sagiv. CSSV: Towards a realistic
tool for statically detecting all buffer overflows in C. In
Proceedings of the ACM SIGPLAN 2003 Conference on
Programming Language Design and Implementation, 2003.

[23] J. Gray and A. Reuter. Transaction Processing: Concepts and
Techniques. Morgan Kaufmann, 1993.

[24] N. Gupta, L. Jagadeesan, E. Koutsofios, and D. Weiss.
Auditdraw: Generating audits the FAST way. In Proceedings of
the 3rd IEEE International Symposium on Requirements
Engineering, 1997.

[25] R. Hastings and B. Joyce. Purify: Fast detection of memory
leaks and access errors. In Proceedings of the Winter USENIX
Conference, 1992.

[26] G. Haugk, F. Lax, R. Royer, and J. Williams. The 5ESS(TM)
switching system: Maintenance capabilities. AT&T Technical
Journal, 64(6 part 2):1385–1416, July-August 1985.

[27] T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, and
Y. Wang. Cyclone: A safe dialect of C. In USENIX Annual
Technical Conference, June 2002.

[28] R. Jones and P. Kelly. Backwards-compatible bounds checking
for arrays and pointers in C programs. In Proceedings of Third
International Workshop On Automatic Debugging, May 1997.

[29] V. Kiriansky, D. Bruening, and S. Amarasinghe. Secure
Execution Via Program Shepherding. In Proceedings of 11th
USENIX Security Symposium, August 2002.

[30] M. Litzkow, M. Livny, and M. Mutka. Condor - A Hunter of
Idle Workstations. In Proceedings of the 8th International
Conference of Distributed Computing Systems, 1988.

[31] M. Litzkow and M. Solomon. The Evolution of Condor
Checkpointing.

[32] M. R. Lyu. Software Fault Tolerance. John Wiley & Sons,
1995.

[33] S. Mourad and D. Andrews. On the reliability of the IBM
MVS/XA operating system. IEEE Transactions on Software
Engineering, September 1987.

[34] G. C. Necula, S. McPeak, and W. Weimer. CCured: type-safe
retrofitting of legacy code. In Symposium on Principles of
Programming Languages, 2002.

[35] V. S. Pai, P. Druschel, and W. Zwanenepoel. Flash: An
efficient and portable Web server. In USENIX Annual
Technical Conference, General Track, 1999.

[36] M. Rinard, C. Cadar, D. Roy, D. Dumitran, T. Leu, and W. S.
Beebee. Enhancing server availability and security through
failure-oblivious computing. In 6th Symposium on Operating
Systems Design and Implementation, Dec. 2004.

[37] R. Rugina and M. Rinard. Symbolic bounds analysis of
pointers, array indices, and accessed memory regions. In
Proceedings of the ACM SIGPLAN ’00 Conference on
Programming Language Design and Implementation , June
2000.

[38] O. Ruwase and M. S. Lam. A Practical Dynamic Buffer
Overflow Detector. In Proceedings of the 11th Annual Network
and Distributed System Security Symposium, February 2004.

[39] M. I. Seltzer and C. Small. Self-monitoring and self-adapting
operating systems. In Proceedings of the Sixth workshop on
Hot Topics in Operating Systems, 1997.

[40] S. Sidiroglou, G. Giovanidis, and A. Keromytis. Using
execution transactions to recover from buffer overflow attacks.
Technical Report CUCS-031-04, Columbia University
Computer Science Department, September 2004.

[41] D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken. A First
Step towards Automated Detection of Buffer Overrun
Vulnerabilities. In Proceedings of the Year 2000 Network and
Distributed System Security Symposium, 2000.

[42] H. Xi and F. Pfenning. Eliminating Array Bound Checking
Through Dependent Types. In Proceedings of ACM SIGPLAN
Conference on Programming Language Design and
Implementation, June 1998.

[43] S. H. Yong and S. Horwitz. Protecting C Programs from
Attacks via Invalid Pointer Dereferences. In Proceedings of the
9th European software engineering conference held jointly
with 10th ACM SIGSOFT international symposium on
Foundations of software engineering, 2003.

