Bayesian Models of

Graphs, Arrays and

Other Exchangeable Random Structures

PETER ORBANZ AND DANIEL M. Roy

Abstract. The natural habitat of most Bayesian
methods is data represented by exchangeable sequences
of observations, for which de Finetti’s theorem provides
the theoretical foundation. Dirichlet process clustering,
Gaussian process regression, and many other parametric
and nonparametric Bayesian models fall within the remit
of this framework; many problems arising in modern data
analysis do not. This expository paper provides an intro-
duction to Bayesian models of graphs, matrices, and other
data that can be modeled as arrays of random variables.
We describe results in probability theory that generalize
de Finetti’s theorem to such data and discuss the relevance
of these results to nonparametric Bayesian modeling. With
the basic ideas in place, we survey example models avail-
able in the literature; applications of such models include
collaborative filtering, link prediction, and graph and net-
work analysis. We also highlight connections to recent de-
velopments in graph theory and probability, and sketch the
more general mathematical foundation of Bayesian meth-
ods for other types of data beyond sequences and arrays.

1. Introduction. For data represented by exchange-
able sequences, Bayesian nonparametrics has developed
into a flexible and powerful toolbox of models and al-
gorithms. Its modeling primitives—Dirichlet processes,
Gaussian processes, etc.—are widely applied and well-
understood, and can be used as components in hierarchical
models [60] or dependent models [48] to address a wide va-
riety of data analysis problems. One of the main challenges
for Bayesian statistics and machine learning is arguably to
extend this toolbox to data such as graphs, networks and
relational data.

The type of data we focus on in this article are array-
valued observations. By a random d-dimensional ar-
ray, or simply d-array, we will mean a collection of ran-
dom variables X;, ;,, (i1,...,iq) € N9 indexed by d-
tuples of natural numbers. A sequence is a l-array; a
matrix is a 2-array. A special case of particular impor-
tance is graph-valued data (which can represented by an
adjacency matrix, and hence by a random 2-array). Array-
valued data arises in problems such link prediction, cita-
tion matching, database repair, and collaborative filtering.

If we model such data naively, we encounter a variety
of difficult questions: On what parameter space should we
define priors on graphs? In a collaborative filtering task,
what latent variables render user data conditionally inde-
pendent? What can we expect to learn about an infinite
random graph if we only observe a finite subgraph, how-

ever large? There are answers to these questions, and most
of them can be deduced from a single result, known as the
Aldous-Hoover theorem [3, 34], which gives a precise char-
acterization of the conditional independence structure of
random graphs and arrays if they satisfy an exchangeabil-
ity property. Hoff [31] was the first to invoke this result in
the machine learning literature.

This article explains the Aldous-Hoover theorem and
its application to Bayesian modeling. The larger theme
is that most Bayesian models for “structured” data can
be understood as exchangeable random structures. Each
type of structure comes with its own representation the-
orem. In the simplest case—exchangeable sequences rep-
resented by de Finetti’s theorem—the Bayesian modeling
approach is well-established. For more complex data, the
conditional independence properties requisite to statistical
inference are more subtle, and if representation results are
available, they offer concrete guidance for model design.
On the other hand, the theory also clarifies the limita-
tions of exchangeable models—it shows, for example, that
most Bayesian models of network data are inherently mis-
specified, and why developing Bayesian models for sparse
structures is hard.
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2. Bayesian Models of Exchangeable Structures.
The models of graph- and array-valued data described in
this article are special cases of a very general approach:
Bayesian models that represent data by a random struc-
ture, and use exchangeability properties to deduce valid sta-
tistical models and useful parametrizations. This section
sketches out the ideas underlying this approach, before we
focus on graphs and matrices in Section 3.

We are interested in random structures—sequences,
partitions, graphs, functions, and so on—that possess an
exchangeability property: i.e., certain components of the
structure—the elements of a sequence or the rows and
columns of a matrix, for example—can be rearranged with-
out affecting the distribution of the structure. Formally
speaking, the distribution is invariant to the action of some
group of permutations. Borrowing language introduced
by David Aldous in applied probability [6], we collectively
refer to random structures with such a property as ex-
changeable random structures, even though the spe-
cific definition of exchangeability may vary considerably.
Table 1 lists some illustrative examples.

The general theme is as follows: The random structure
is a random variable X, with values in a space X, of in-
finite sequences, graphs, matrices, etc. If X, satisfies an
exchangeability property, this property determines a spe-
cial family {p(.,0) : 8 € T} of distributions on X, which
are called the ergodic distributions. The distribution of
X then has a unique integral decomposition

P(Xs € .) :/Tp(.,e)y(da). (2.1)

The distribution of X, is completely determined by v, and
vice versa, i.e., Eq. (2.1) determines a bijection

PXp€.) +— v.

The integral represents a hierarchical model: We can sam-
ple X in two stages,

O~v

(2.2)

Xl|® ~p(.,0).
In Bayesian modeling, the distribution v in Eq. (2.1) plays
the role of a prior distribution, and a specific choice of v
determines a Bayesian model on X .

Virtually all Bayesian model imply some form of ex-
changeability assumption, although not always in an ob-
vious form. Eq. (2.1) and (2.2) give a first impression of
why the concept is so important: If data is represented by
an exchangeable random structure, the observation model
is a subset of the ergodic distributions, and the parameter
space of the model is either the space T or a subspace.
Given a specific type of exchangeable structure, the rep-
resentation theorem specifies these components. Perhaps
the most important role is played by the ergodic distri-
butions: The form of these distributions explains condi-
tional independence properties of the random structure
X~. For exchangeable sequences, observations are sim-
ply conditionally independent and identically distributed
(ii.d.) given ©. In other exchangeable structures, the
independence properties are more subtle—exchangeability
generalizes beyond sequences, whereas the conditional i.i.d.
assumption does not.

2.1. Basic examples: Sequences and partitions. Ex-
changeable sequences are the canonical example of ex-
changeable structures. An exchangeable sequence is an
infinite sequence X := (X7, Xs,...) of random variables
whose joint distribution satisfies

P(Xl €A1,X2 GAQ,...)
= ]P)(Xﬂ,(l) S Al,Xﬂ.(g) S AQ, .. )

(2.3)

for every permutation 7 of N := {1,2,...} and collection
A1, Ay, ... of (measurable) sets. Because expressing distri-
butional equalities this way is cumbersome, we will instead
write Y = Z whenever two random variables Y and Z have
the same distribution. Therefore, we can express Eq. (2.3)
by

(X17X23~") = (Xﬂ'(l)7X7T(2)7"') ’

or simply by (X,,) = (Xx(n)), where the range of the vari-
able n is left implicit. If X7, X5, ... are exchangeable, then
de Finetti’s representation theorem implies they are even
conditionally i.i.d.:

(2.4)

THEOREM 2.1 (de Finetti). Let X7, Xo,... be an in-
finite sequence of random variables with values in a space
X.

1. The sequence X1, Xo,... is exchangeable if and only
if there is a random probability measure © on X—
i.e., a random variable with values in the set M(X)

Probabilistic terminology

We assume familiarity with basic notions of probability and measure theory, but highlight two key notions here: Measurable functions
play a prominent role in the representation results, especially those of the form f : [0, 1]d — [0, 1], and we encourage readers to think of
such functions as “nearly continuous”. More precisely, f is measurable if and only if, for every € > 0, there is a continuous function
fe : [0,1]% — [0, 1] such that P(f(U) # fe(U)) < €, where U is uniformly distributed in [0, 1]%. Another concept we use frequently is
that of a probability kernel, the mathematical representation of a conditional probability. Formally, a probability kernel p from )
to X is a measurable function from ) to the set M(X) of probability measures on X. For a point y € Y, we write p(.,y) for the
probability measure on X. For a measurable subset A C X, the function p(4, .) is a measurable function from Y to [0,1]. Note that
for every pair of random variables, e.g., in R, there is a probability kernel p from R to R such that p(.,Y) =P[X € .|Y].



of probability distributions on X —such that the X; are
conditionally i.i.d. given © and

P(Xl € Al,X2 € AQ, .. ) = / HH(Al)V(dO)
M(X) i=1

(2.5)

where v is the distribution of ©. We call v the mixing
measure and O the directing random measure.
(Some authors call v the de Finetti measure.)

2. If the sequence is exchangeable, the empirical distri-

butions
. 1 <
Sn(.):zﬁ;éxi(.), n €N, (2.6)
converge to © as n — oo in the sense that
S,.(A) = ©(4) as n— o (2.7)

with probability 1 under v and for every (measurable)
set A. 0

Comparing to Eq. (2.1), we see that the ergodic distri-
butions are the factorial distributions

p(A; x Ay x ---,0) = [ 0(4) ,
i=1

for every sequence of measurable subsets A; of X. The
hierarchical structure is of the form:

O~v
X | © ~y4 6.

(2.8)

We have mentioned above that the ergodic distributions
explain conditional independence properties within the
random structure. Exchangeable sequences are a partic-
ularly simple case, since the elements of the sequence com-
pletely decouple given the value of ©, but we will encounter
more intricate forms of conditional independence in Sec-
tion 3.

A second illustrative example of an exchangeability the-
orem is Kingman’s theorem for exchangeable partitions,
which explains the role of exchangeability in clustering
problems. A clustering solution is a partition of X7, X5, ...
into disjoint sets. A clustering solution can be represented
as a partition m = (b1, be,...) of the index set N. Each of
the sets b;, called blocks, is a finite or infinite subset of N;
every element of N is contained in exactly one block. An
exchangeable partition is a random partition X, of N
which is invariant under permutations of N. Intuitively,
this means the probability of a partition depends only on
the sizes of its blocks, but not on which elements are in
which block.

Kingman [39] showed that exchangeable random parti-
tions can again be represented in the form Eq. (2.1), where
the ergodic distributions p(.,#) are a specific form of dis-
tribution which he referred to as paint-boxes. To define

Us Uy Uz

S1 52 T

Fig 1: Sampling from a paint-box distribution with parameter
s = (s1,82,...;5). Two numbers 4, j are assigned to the same block
of the partition if the uniform variables U; and U; are contained in
the same interval.

a paint-box, let 6 := (s1, s2,...) be a sequence of scalars

s; € [0,1] such that

(2.10)

S1 >89 > ... and Zsigl.
i

Then 6 defines a partition of [0, 1] into intervals

si) and  T:=(1-) s;,1], (2.11)
i=1

as shown in Fig. 1. The paint-box distribution p( ., §) now
generates a random partition of N as follows:

1. Generate Uy, Us, ... ~;q Uniform]0, 1].

2. Assign n € N to block b; if U, € I;. Assign every
remaining element, i.e., those n such that U, € I, to
its own blocks of size one.

THEOREM 2.2 (Kingman). Let X be random parti-

tion of N.

1. X is exchangeable if and only if

P(Xw€ )= [ pCoople), (212
T
where T is the set of sequences 8 = (s1, $2,...) as de-
fined above, and p(.,0) is the paint-box distribution
with parameter 6.
2. If X is exchangeable, the scalars s; can be recovered
asymptotically as limiting relative block sizes

8; = nhﬁn;o " (2.13)
O
EXAMPLE 2.3 (Chinese restaurant process). A well-

known example of a random partition is the Chinese
restaurant process (CRP; see e.g. [30, 54] for details). The
CRP is a discrete-time stochastic process which generates
a partition of N. Its distribution is determined by a scalar
concentration parameter «; different values of « corre-
spond to different distributions P(X € .) in Eq. (2.12).
If X is generated by a CRP, the paint-box © is essentially
the sequence of weights generated by the “stick-breaking”
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construction of the Dirichlet process [30]—with the differ-
ence that the elements of © are ordered by size, whereas
stick-breaking weights are not. In other words, sampling
from v in Eq. (2.12) can be defined as a stick-breaking and
subsequent ordering. N

2.2. Exchangeability and Bayesian Theory. A more
formal description is helpful to understand the role of
the exchangeability assumption and of representation the-
orems. It requires a brief review of the formal approach
to modeling repetitive observations: Formal models repre-
sent randomness by an abstract probability space €2, with a
probability distribution P defined on it. A random variable
is a mapping X : Q2 — X. A single value w € ) contains
all information about a statistical experiment, and is never
observed itself. Intuitively, it can be helpful to think of w
as a state of the universe; the mapping X picks out some
specific aspect of w, such as the outcome X (w) of a coin
flip.

If we record repetitive observations X1, Xs,... € X, all
recorded values are still governed by a single value of w,
i.e., we observe (Xi(w),...,X,(w)). The sample can be
collected in the empirical distribution

1
S (X1,..., Xp) = 525%- (2.14)

i<n

A fundamental assumption of statistics is that the distri-
bution of data can asymptotically be recovered from ob-
servations. If the infinite sequence X = (X3, Xo,...) is
assumed exchangeable, Theorem 2.1 shows that the empir-
ical distribution converges to the distribution of the vari-
ables X; as n — oo. Thus, if we define S := lim,, S,,, the
limiting empirical distribution S o X*° coincides with the
distribution of the X;. In a frequentist setting, we would
similarly assume X to be i.i.d., and convergence is then
guaranteed by the law of large numbers or the Glivenko-
Cantelli theorem.

An observation model is now a subset
P={PeM(X)|0ecT} (2.15)

of the space M(X) of distributions on X. To tie the various
ingredients together, the following type of diagram (due to

Schervish [58]) is very useful:

0" xo 8

(2.16)
Each parameter value 6 uniquely corresponds to a single
distribution Py € M(X). The correspondence between the
two is formalized by a bijective mapping T' with T'(Py) = 6,
called a parametrization.

The mappings in the diagram can be composed into a
single mapping by defining

O:=ToSoX>. (2.17)
From a Bayesian perspective, this is the model parameter.
If we identify © and Pg, then O is precisely the directing
random measure in de Finetti’s theorem. Its distribution
v(.)=P(© € .) is the prior. If we were to observe the
entire infinite sequence X, then S o X*° =T o © would
identify a single distribution on X. In an actual experi-
ment, we only observe a finite subsequence X", and the
remaining uncertainty regarding © is represented by the
posterior P[O© € . |X"].

To generalize this approach to exchangeable structures,
we slightly change our perspective by thinking of X°° as a
single random structure, rather than a collection of repet-
itive observations. If P = S o X is the limiting distri-
bution of the X;, then by conditional independence, P>
is the corresponding joint distribution of X*°. Comparing
to Eq. (2.5), we see that the distributions P> are pre-
cisely the ergodic measures in de Finetti’s theorem. In
other words, when regarded as a distribution on X, the
empirical distribution converges to the ergodic distribution,
and we can substitute the set £ of ergodic distributions for
M(X) in diagram (2.16). Thus, the model is now a subset
{P° € M(X>®)|0 T} of €.

Now suppose X, is a space of infinite structures—
infinite graphs, sequences, partitions, etc.—and X, is a
random element of X, and exchangeable. We have noted
above that statistical inference is based on an indepen-
dence assumption. The components of exchangeable struc-
tures are not generally conditionally i.i.d. as they are for
sequences, but if a representation theorem is available, it
characterizes a specific form of independence by character-
izing the ergodic distributions. Although the details differ,

TABLE 1
Ezxchangeable random structures

Random structure Theorem of

Ergodic distributions p( ., 6) Statistical application

de Finetti [19]
Hewitt and Savage [29]
Bithlmann [17]

Exchangeable sequences

Processes with exchangeable increments

Exchangeable partitions Kingman [39]
Exchangeable arrays Aldous [3]
Hoover [34]

Kallenberg [35]
Block-exchangeable sequences

Diaconis and Freedman [21]

product distributions

Lévy processes
“paint-box” distributions
sampling schemes Eq. (6.4), Eq. (6.10)

clustering

Markov chains

most Bayesian models [e.g. 58]

graph-, matrix- and array-valued
data (e.g., [31]); see Section 4

e.g. infinite HMMs [9, 24]



the general form of a representation theorem is qualita-
tively as follows:

1. It characterizes a set £ of ergodic measures for this
type of structure. The ergodic measures are elements
of M(X), but £ is “small” as a subset of M(X).
Sampling from an ergodic distribution represents some
form of conditional independence between elements of
the structure X ..

2. The distribution of X, has a representation of the
form Eq. (2.1), where p(.,8) € £ for every 6 € T.

3. The (suitably generalized) empirical distribution of a
substructure of size n (e.g., of a subgraph with n ver-
tices) converges to a specific ergodic distribution as
n — oo. Defining the empirical distribution of a ran-
dom structure can be a challenging problem; every
representation result implies a specific definition.

In the general case, the diagram now takes the form:

e (2.18)

Here, S is now the limiting distribution of a suitable “ran-
dom substructure”, and the model P is again a subset of
the ergodic distributions identified by the relevant repre-
sentation theorem.

In Kingman’s theorem 2.2, for example, the ergodic dis-
tributions (the paint-box distributions) are parametrized
by the set of decreasing sequences § = (s1,82,...), and
convergence of S, is formulated in terms of convergence
of limiting relative blocksizes to 6. The corresponding re-
sults for random graphs and matrices turn out to be more
subtle, and are discussed separately in Section 3.

2.3. “Non-exchangeable” data. Exchangeability seems
at odds with many types of data; most time series, for ex-
ample, would certainly not be assumed to be exchangeable.
Nonetheless, a Bayesian model of a time series will almost
certainly imply an exchangeability assumption—the cru-
cial question is which components of the overall model are
assumed to be exchangeable. As the next example illus-
trates, these components need not be the variables repre-
senting the observations.

EXAMPLE 2.4 (Lévy processes and Biithlmann’s theo-
rem). The perhaps most widely used model for time se-
ries in continuous time are Lévy processes, i.e., a station-
ary stochastic process with independent increments, whose
paths are piece-wise continuous functions on R,. If we ob-
serve values X1, Xo, ... of this process at increasing times
t1 <ty < ..., the variables X, are clearly not exchange-
able. However, the increments of the process are i.i.d.
and hence exchangeable. More generally, we can consider
processes whose increments are exchangeable (rather than
i.i.d.). The relevant representation theorem is due to Hans
Biithlmann [e.g. 37, Theorem 1.19]:

If a process with piece-wise continuous paths on Ry has
exchangeable increments, it is a mizture of Lévy
processes.

Hence, each ergodic measure p( ., 0) is the distribution of
a Lévy process, and the measure v is a distribution on pa-
rameters of Lévy processes or—in the parlance of stochas-
tic process theory—on Lévy characteristics. N

EXAMPLE 2.5 (Discrete times series and random walks).
Another important type of exchangeability property is
Markov exchangeability [21, 68], which is defined for se-
quences X1, Xs,... in a countable space X. At each new
observation, the sequence may remain in the current state
z € X, or transition to another state y € X. It is called
Markov exchangeable if its joint probability depends
only on the initial state and the number of transitions be-
tween each pair of values x and y, but not on when these
transitions occur. In other words, a sequence is Markov ex-
changeable if the value of X7 and the transition counts are
a sufficient statistic. Diaconis and Freedman [21] showed
the following:

If a (recurrent) process is Markov exchangeable, it is a
mixture of Markov chains.

(Recurrence means that each visited state is visited in-
finitely often if the process is run for an infinite number of
steps.) Thus, each ergodic distribution p(.,0) is the dis-
tribution of a Markov chain, and a parameter value 6 con-
sists of a distribution on X (the distribution of the initial
state) and a transition matrix. If a Markov exchangeable
process is substituted for the Markov chain in a hidden
Markov model, i.e., if the Markov exchangeable variables
are latent variables of the model, the resulting model can
express much more general dependencies than Markov ex-
changeability. The infinite hidden Markov model [9] is an
example; see [24]. Recent work by Bacallado, Favaro, and
Trippa [8] constructs prior distributions on random walks
that are Markov exchangeable and can be parametrized so
that the number of occurrences of each state over time has
a power-law distribution. N

A very general approach to modeling is to assume that
an exchangeability assumption holds marginally at each
value of a covariate variable z, e.g., a time or a location
in space: Suppose X is a set of structures as described
above, and Z is a space of covariate values. A marginally
exchangeable random structure is a random measur-
able mapping

€7 - Xy (2.19)

such that, for each z € Z, the random variable £(z) is an
exchangeable random structure in X .

ExAMPLE 2.6 (Dependent Dirichlet process). A pop-
ular example of a marginally exchangeable model is the
dependent Dirichlet process (DDP) of MacEachern [48].
In this case, for each z € Z, the random variable £(z)
is a random probability measure whose distribution is a
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Fig 2: de Finetti’s theorem expressed in terms of random functions:
If F' is the inverse CDF of the random measure © in the de Finetti
representation, X; can be generated as X; := F(U;), where U; ~
Uniform|0, 1].

Dirichlet process. More formally, Y is some sample space,
X oo = M(Y), and the DDP is a distribution on mappings
Z — M(Y); thus, the DDP is a random probability kernel.
Since £(z) is a Dirichlet process if z is fixed, samples from
£(z) are exchangeable. <

Eq. (2.19) is, of course, just another way of saying that £
is a X o-valued stochastic process indexed by Z, although
we have made no specific requirements on the paths of &.
The path structure is more apparent in the next example.

ExaMPLE 2.7 (Coagulation- and fragmentation mod-
els). If € is a coagulation or fragmentation process,
X oo is the set of partititions of N (as in Kingman’s theo-
rem), and Z = R,. For each z € R, the random variable
£(z) is an exchangeable partition—hence, Kingman’s the-
orem is applicable marginally in time. Over time, the ran-
dom partitions become consecutively finer (fragmentation
processes) or coarser (coagulation processes): At random
times, a randomly selected block is split, or two randomly
selected blocks merge. We refer to [10] for more details and
to [62] for applications to Bayesian nonparametrics. <

2.4. Random functions wvs random measures. De
Finetti’s theorem can be equivalently formulated in terms
of a random function, rather than a random measure, and
this formulation provides some useful intuition for Sec-
tion 3. Roughly speaking, this random function is the
inverse CDF of the random measure © in de Finetti’s the-
orem; see Fig. 2.

More precisely, suppose that X = [a,b]. A measure on
[a, b] can by expressed by its cumulative distribution func-
tion (CDF). Hence, sampling the random measure O in de
Finetti’s theorem is equivalent to sampling a random CDF
1. A CDF is not necessarily an invertible function, but
it always admits a so-called right-continuous inverse 1,
given by

=L(u) = inf {z € [a,b] | ¥(z) > u} .

This function inverts ¢ in the sense that ¢ o ¢¥=1(u) = u
for all u € [0,1]. It is well-known that any scalar random

(2.20)

variable X; with CDF 1) can be generated as

X; = =H(U;) where U; ~ Uniform[0,1] . (2.21)
In the special case X = [a, b], de Finetti’s theorem there-
fore translates as follows: If X7, Xo,... is an exchangeable
sequence, then there is a random function F' := ¥—1 such
that
(X1, Xs,...) = (F(U)),F(U),...), (2.22)

where Uy, Us, ... are i.i.d. uniform variables.

It is much less obvious that the same should hold on an
arbitrary sample space, but that is indeed the case:

COROLLARY 2.8. Let Xy, Xo,... be an infinite, ex-
changeable sequence of random variables with values in a
space X. Then there exists a random function F from
[0,1] to X such that, if Uy, Us,... is an i.i.d. sequence of
uniform random variables,

(X1,Xo, ...

) = (F(Uy), F(Uy),...). (2.23)

O

As we will see in the next section, this random function
representation generalizes to the more complicated case of
array data, whereas the random measure representation
in Eq. (2.5) does not. The result is formulated here as
a corollary, since it formally follows from the more gen-
eral theorem of Aldous and Hoover which we have yet to
describe.

3. Exchangeable Graphs and Matrices. Repre-
senting data as a matriz is a natural choice only if the
subdivision into rows and columns carries information. A
useful notion of exchangeability for matrices should hence
preserve rows and columns, rather than permuting entries
arbitrarily. There are two possible definitions: We could
permute rows and columns separately, or simultanously.
Both have important applications in modeling. Since rows
and columns intersect, the exchangeable components are
not disjoint as in de Finetti’s theorem, and the entries of
an exchangeable matriz are not conditionally i.i.d.

3.1. Defining exchangeability of matrices. We consider
observations that can be represented by a random ma-
trix, or random 2-array, i.e., a collection of random vari-
ables X;;, where 4,j € N. All variables X;; take values in
a common sample space X. Like the sequences character-
ized by de Finetti’s theorem, the matrix has infinite size,
and we denote it by (Xj;); jen, or by (X;;) for short.

DEFINITION 3.1 (Separately exchangeable array). A
random array (X;;) is called separately exchangeable
if

(Xij) = Xn(yw () (3.1)

holds for every pair of permutations m, 7’ of N. N
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Fig 3: The uniform random variables Uy; ;13 or U;; can themselves be arranged in a matrix. Left: In the separately exchangeable case
(Corollary 3.7), the variables form an infinite matrix and are indexed as U;;. Middle: The jointly exchangeable case (Theorem 3.4) implies
a symmetric matrix U;; = Uj;, which is expressed by the multiset index notation Uy, ;33. The subset of variables which is actually random
can hence be arranged in an upper triangular matrix, which in turn determines the variables in the shaded area by symmetry. Right: In
the special case of exchangeable random graphs (Example 3.5), the diagonal is also non-random, and variables can be indexed as Ui, 5y

Applying two separate permutations to the rows and the
columns is appropriate if rows and columns represent two
distinct sets of entities, such as in a collaborative filtering
problem, where rows may correspond to users and columns
to movies. It is less adequate if (X;;) is, for example, the
adjacency matrix of a graph: In this case, there is only
a single set of entities—the vertices of the graph—each
of which corresponds both to a row and a column of the
matrix.

DEFINITION 3.2 (Jointly exchangeable array). A ran-
dom array (X;;); jen is called jointly exchangeable if

d

(Xi5) = (Xn(iyn (i) (3.2)
holds for every permutation 7 of N. N
ExaMpLE 3.3  (Exchangeable graph). Suppose

g = (v,e) is an undirected graph with an infinite (but
countable) vertex set. We can label the vertices by the
elements of N. The graph can be represented by its
adjacency matrix x = (z;;), a binary matrix in which
x;; = 1 indicates that the edge between nodes 7 and j is
present in the graph. Since the graph is undirected, the
matrix is symmetric. If we replace the matrix « by a
random matrix X = (X;;), the edge set e is replaced by
a random edge set F, and the graph becomes a random
graph G = (N, E'). We call G an exchangeable random
graph if its adjacency matrix is a jointly exchangeable
array. Thus, G is exchangeable if its distribution is
invariant under relabeling of the vertices. Intuitively,
this means that the probability of seeing a particular
graph depends only on which patterns occur in the graph
and how often—how many edges there are, how many
triangles, how many five-stars, etc.—but not on where in
the graph they occur. N

3.2. The Representation Theorems. The analogue of
de Finetti’s theorem for exchangeable matrices is the
Aldous-Hoover theorem [e.g. 37, Theorem 7.22]. It has two
separate versions, for jointly and for separately exchange-
able arrays.

THEOREM 3.4 (Jointly exchangeable matrices). A ran-
dom array (X;;)ijen is jointly exchangeable if and only if
it can be represented as follows: There is a random mea-
surable function F :[0,1]3 — X such that

(Xiy) £ (F(UL Uy, Ugi ) (3.3)
where (Us)ien and (Ug iy )ijen are, respectively, a se-

quence and an array of i.i.d. Uniform[0,1] random vari-
ables. O

If the function F is symmetric in its first two
arguments—if F(z,y,.) = F(y,z,.) for all  and y—
Eq. (3.3) implies the matrix X is symmetric, but a jointly
exchangeability matrix X need not be symmetric in gen-
eral.

To understand Eq. (3.3), we have to clarify various
different ways of indexing variables: Roughly speaking,
the variables Uy; jy account for the randomness in row-
column interactions, and hence must be indexed by two
values, a row index ¢ and a column index j. Indexing them
as U;; would mean that, in general, U;; and Uj; are two
distinct quantities. This is not necessary in Theorem 3.4:
To represent jointly exchangeable matrices, it is sufficient
to sample only U;;, and then set Uj; := U;;. This is usu-
ally expressed in the literature by using the set {i,j} as
an index, since such sets are unordered, i.e., {3, j} = {j,4}.
This is not quite what we need here, since a diagonal el-
ement of the matrix would have to be indexed {%,i}, but
sets do not distinguish multiple occurrences of the same
element—in other words, {i,i} = {i}. On the other hand,
multisets, commonly denoted {{i,j}}, distinguish multiple
occurrences. See also Fig. 3.

EXAMPLE 3.5 (Exchangeable graphs, cont.). If X is
a random graph, the variables U; are associated with
vertices—i.e., U; with vertex i—and the variables Ug; iy
with edges. We consider undirected graphs without self-
loops. Then (X;;) is symmetric, and the diagonal en-
tries of the adjacency matrix are non-random and zero.
Hence, we can neglect the diagonal variables Uy 1, and
can therefore index by ordinary sets as Uy ;3. Since X
is binary, i.e., X;; € {0,1}, it can be represented as fol-



lows: There is a two-argument, symmetric random func-
tion W : [0,1]% — [0, 1] such that

Xij = F(U;,U;,Upi jy) =HUpjy < WU, U)o (3.4)
(where I denotes the indicator function). This follows di-
rectly from Eq. (3.3): For fixed values of U; and Uj, the
function F(U;,Uj, .) is defined on [0,1]. In the graph
case, this function is binary, and takes value 1 on some
set A C [0,1] and value 0 on the complement of A.
Since Uy; jy is uniform, the probability that F is 1 is sim-
ply |A| =: W (U;,U;). The sampling scheme defined by
Eq. (3.4) is visualized in Fig. 4. <

Theorem 3.4 is also applicable to directed graphs. How-
ever, in the directed case, (X;;) is asymmetric, which
changes the conditional independence structure: X;; and
X; are now distinct variables, but since {{4, j}} = {{j,#}},
the representation (3.3) implies that both are still repre-
sented by the same variable Uy; jyy. Thus, X;; and Xj;
are not conditionally independent.

REMARK 3.6 (Non-uniform sampling schemes). The
random variables U;, U;;, etc used in the representation
need not be uniform. The resemblance between functions
on [0,1]? and empirical graph distributions (see Fig. 4)
makes the unit square convenient for purposes of exposi-
tion, but for modeling problems or sampling algorithms,
we could for example choose i.i.d. Gaussian variables on R
instead. In this case, F' would be a different random func-
tion of the form R® — X, rather than [0,1]*> — X. More
generally, any atomless probability measure on a standard
Borel space can be substituted for the Uniform[0, 1] distri-
bution. N

For separately exchangeable arrays, the Aldous-Hoover
representation differs from the jointly exchangeable case:

COROLLARY 3.7 (Separately exchangeable matrices).
A random array (X;j)ijen is separately exchangeable if and
only if it can be represented as follows: There is a random
measurable function F : (0,13 — X such that

(Xij) = (F(UF™, U, Uyy)) (3-5)

where (U;™)ien, (Us") and (Uij)ijen are, respectively, two
sequences and a matriz of i.4.d. Uniform|0, 1] random vari-

ables. O

Since separate exchangeability treats rows and columns
independently, the single sequence (U;) of random vari-
ables in Eq. (3.3) is replaced by two distinct sequences
(Ui )ien and (Us*') jen, respectively. Additionally, we now
need an entire random matrix (U;;) to account for interac-
tions. The index structure of the uniform random variables
is the only difference between the jointly and separately

exchangeable case.

ExAMPLE 3.8 (Collaborative filtering). In the proto-
typical version of a collaborative filtering problem, users
assign scores to movies. Scores may be binary (“like/don’t
like”, X;; € {0,1}), have a finite range (“one to five stars”,
Xi; € {1,...5}), etc. Separate exchangeability then sim-
ply means that the probability of seeing any particular
realization of the matrix does not depend on the way in
which either the users or the movies are ordered. N

REMARK 3.9. We have stated the separately exchange-
able case as a Corollary of Theorem 3.4. The implication is
perhaps not obvious, and most easily explained for binary
matrices: If such a matrix X is separately exchangeable,
we can interpret it as a graph, but since rows and columns
are separate entities, the graph has two separate sets V' o"s
and V" of vertices. Each vertex represents either a row
or a column. Hence, entries of X represent edges between
these two sets, and the graph is bipartite. If the bipar-
tite surrogate graph satisfies Eq. (3.2) for all permutations
7w of N, then it does so in particular for all permutations
that affect only one of the two sets V™" or V°°*. Hence,
joint exchangeability of the bipartite graph implies sepa-
rate exchangeability of the original graph. In Eq. (3.3),
the two separate sets V" and V" of vertices are rep-
resented by two separate sets U;* and U of uniform
variables. Similarly, X;; and X; are represented in the bi-
partite graphs by two separate edges between two distinct
pairs of vertices—row ¢ and column j versus row j and
column 7—and hence represented by two distinct variables
U;; and Uj;, which results in Eq. (3.5). q

3.3. Application to Bayesian Models. The represen-
tation results above have fundamental implications for
Bayesian modeling—in fact, they provide a general char-
acterization of Bayesian models of array-valued data:

If array data is exchangeable (jointly or separately), any
prior distribution can be represented as the distribution of
a random measurable function of the form [0,1]> — [0,1].

More concretely, suppose we are modeling matrix-
valued data represented by a random matrix X. If we
can make the case that X is jointly exchangeable, Theo-
rem 3.4 states that there is a uniquely defined distribution
1 on measurable functions such that X can be generated
by sampling

Fr~upu (3.6)
Vie N: Ui ~ia Uniform|0, 1] (3.7)
VLj eN: U{{i,j}} ~iia Uniform[O, 1] (38)
and computing X as
VZ7] eN: Xij = F(Ui7 Uj, U{{z,j}}) . (39)

Another (very useful) way to express this sampling
scheme is as follows: For every measurable func-
tion f:[0,1]®> — X, we define a probability distribution
p(X € ., f) as the distribution obtained by sampling (U;)
and (U, jy) as in Eq. (3.7)-Eq. (3.8) and then defining
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Fig 4: Sampling an exchangeable random graph according to Eq. (3.4). Left: An instance of the random function W, chosen here as
W = min{x, y}, as a heat map on [0, 1]2. In the case depicted here, the edge (1,2) is not present in the graph, since Ugi,2py > W (Ui, U2).

Middle: The adjacency matrix of a 50-vertex random graph, sampled from the function on the left.

Rows in the matrix are ordered

according the value, rather than the index, of U;, resulting in a matrix resembling W. Right: A plot of the random graph sample. The
highly connected vertices plotted in the center correspond to values lower right region in [0, 1]2.

Xij = f(Ui,Uj, Ui jp)- Thus, p(., f) is a family of dis-
tributions parametrized by f, or more formally, a proba-
bility kernel. X is then sampled as

Fr~p (3.10)
X|F~p(.,F). (3.11
In Bayesian modeling terms, p is a prior distribution, F' a

parameter variable, and p the observation model.
If X is separately exchangeable, we similarly sample

Frp (3.12)
VieN: U™ ~44 Uniform|0, 1] (3.13)
VjeN: U ~ia Uniform|0, 1] (3.14)
Vi, j € N: Uij ~ia Uniform[0, 1] (3.15)
and set

V’L,] eN: Xij = F(Uimw, U;Ol, Uzg) . (316)
Analogous to p, we define a probability kernel q(X € ., f)

which summarizes Eq. (3.13)-Eq. (3.15), and obtain
Fr~p (3.17)
X|F~q(.,F). (3.18)

Bayesian models are usually defined by defining a prior
and a sampling distribution (i.e., likelihood). We hence
have to stress here that, in the representation above, the
sampling distributions p and q are generic—any jointly or
separately exchangeable matrix can be represented with
these sampling distributions, and specifying the model is
equivalent to specifying the prior, i.e., the distribution of
F.

REMARK 3.10 (Non-exchangeable arrays). Various
types of array-valued data depend on time or some other
covariate. In this case, joint or separate exchangeability
can be assumed to hold marginally, as described in Sec-
tion 2.3. For time-dependent graph data, for example, one

would assume that joint exchangeability holds marginally
at each point in time. In this case, the random mapping
¢ in (2.19) becomes a time-indexed array. The random
function W (., .) in Eq. (3.4) then turns into a function
W(.,.,t) additionally dependent on time—which raises
new modeling questions, e.g., whether the stochastic pro-
cess (W(., .,t)); should be smooth. More generally, the
discussion in 2.3 applies to joint and separate exchange-
ability just as it does to exchangeable sequences.

There is a much deeper reason why exchangeability may
not be an appropriate assumption—too oversimplify, be-
cause exchangaeble models of graphs may generate too
many edges—which is discussed in depth in Section 7. <

3.4. Uniqueness of representations. In the repre-
sentation Eq. (3.4), random graph distributions are
parametrized by measurable functions w : [0,1]2 — [0, 1].
This representation is not unique, as illustrated in Fig. 5.
In mathematics, the lack of uniqueness causes a range of
technical difficulties. In statistics, it means that w, when
regarded as a model parameter, is not identifiable. It is
possible, though mathematically challenging, to treat the
estimation problem up to equivalence of functions; Kallen-
berg [35, Theorem 4] has solved this problem for a large
class of exchangeable arrays (see also [18, §4.4] for recent
related work). For now, we will only explain the prob-
lem; a unique parametrizations exists, but it is based on
the notion of a graph limit, and has to be postponed until
Section 5.

To see that the representation by w is not unique, note
that the only requirement on the random variables U; in
Theorem 3.4 is that they are uniformly distributed. Sup-
pose we define a bijective function ¢ : [0,1] — [0, 1] with
the property that, if U is a uniform random variable, ¢(U)
is still uniformly distributed. Such a mapping is called a
measure-preseving transformation (MPT), because it
preserves the uniform probability measure. Intuitively, an
MPT generalizes the concept of permuting the nodes of
a graph to the representation of graphs by functions on
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Fig 5: Non-uniqueness of representations: The function on the left
parametrizes a random graph as in Fig. 4. On the right, this function
has been modified by dividing the unit square into 10 x 10 blocks and
applying the same permutation of the set {1,...,10} simultaneously
to rows and columns. Since the random variables U; in Eq. (3.4)
are ii.d., sampling from either function defines one and the same
distribution on random graphs.

a continous set. There is an infinite number of such map-
pings. For example, we could define ¢ by partitioning [0, 1]
into any number of blocks, and then permute these blocks,
as illustrated in Fig. 5

In the sampling procedure Eq. (3.4), we can apply ¢
simultaneously to both axes of [0, 1]>—formally, we apply
the mapping ¢ ® ¢—without changing the distribution of
the resulting random graph, since the ¢(U;) are still uni-
form. Equivalently, we can leave the U; untouched, and
instead apply ¢ ® ¢ to the function w. The resulting func-
tion (¢ ® ¢) o w parametrizes the same random graph as
w.

REMARK 3.11 (Monotonization is not applicable). A
question which often arises in this context is whether
a unique representation can be defined through “mono-
tonization”: On the interval, every bounded real-valued
function can be transformed into a monotone left-
continuous functions by a measure-preserving transfor-
mation, and this left-continuous representation is unique
[e.g. 45, Proposition A.19]. It is well known in combi-
natorics that the same does not hold on [0,1] [15, 45].
More precisely, one might attempt to monotonize w on
[0,1]? by first projecting onto the axes, i.e., by defining
wy(z) := [w(z,y)dy and wa(y) := [w(z,y)dz. The func-

m

Fig 6: The functions w and w’ are distinct but parametrize the
same random graph (an almost surely bipartite graph). Both remain
invariant and hence distinct under monotonization, which illustrates
that monotonization does not yield a canonical representation (see
Remark 3.11 for details). Additionally, function w’’ shows that the
projections do not distinguish different random graphs: w’’ projects
to the same constant functions as w and w’, but parametrizes a
different distribution (an Erdds-Renyi graph with edge probability

1/2).

N

tion w; can be transformed into a monotone representa-
tion by a unique MPT ¢1, and so can ws by ¢2. We could
then use (¢1 ® ¢2) ow as a representative of w, but this
approach does not yield a canonical representation: Fig. 6
shows two distinct functions w and w’, which have indenti-
cal projections wy = wy = w} = w) (the constant function
1/2) and determine identical MPTs ¢; and ¢5 (the identity
map). The monotonizations of w and w’ are hence again
w and w’, which are still distinct, even though w and w’
parametrize the same graph. N

4. Literature Survey. The representation theorems
show that any Bayesian model of an exchangeable array can
be specified by a prior on functions. Models can therefore
be classified according to the type of random function they
employ. This section surveys several common categories
of such random functions, including random piece-wise
constant (p.w.c.) functions, which account for the struc-
ture of models built using Chinese restaurant processes,
Indian buffet processes and other combinatorial stochas-
tic processes; and random continuous functions with, e.g.,
Gaussian process priors. Special cases of the latter include
a range of matriz factorization and dimension reduction
models proposed in the machine learning literature. Ta-
ble 2 summarizes the classes in terms of restrictions on
the random function and the values it takes.

4.1. Cluster-based models. Cluster-based models as-
sume that the rows and columns of the random array
X := (Xj;) can be partitioned into (disjoint) classes, such
that the probabilistic structure between every row- and
column-class is homogeneous. Within social science, this
idea is captured by assumptions underlying stochastic
block models [33, 65].

The collaborative filtering problem described in Ex-
ample 3.8 is a prototypical application: here, a cluster-
based model would assume that the wusers can be
partitioned into classes/groups/types/kinds (of users),
and likewise, the movies can also be partitioned into
classes/groups/types/kinds (of movies). Having identified
the underlying partition of users and movies, each class of
user would be assumed to have a prototypical preference
for each class of movie.

Because a cluster-based model is described by two par-
titions, this approach to modeling exchangeable arrays is
closely related to clustering, and many well-known non-
parametric Bayesian stochastic processes—e..g, the Dirich-
let process and Pitman-Yor process, or their combinatorial
counterpart, the Chinese restaurant process—are common
components of cluster-based models. Indeed, we will begin
by describing the Infinite Relational Model [38, 66], the
canonical nonparametric, cluster-based, Bayesian model
for arrays.

To our knowledge, the Infinite Relational Model, or sim-
ply IRM, was the first nonparametric Bayesian model of
an exchangeable array. The IRM was introduced in 2006
independently by Kemp, Tenenbaum, Griffiths, Yamada
and Ueda [38], and then by Xu, Tresp, Yu and Kriegel
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Model class

Random function F

Distribution of values

Cluster-based (Section 4.1) p-w.c. on random product partition exchangeable
Feature-based (Section 4.2) p-w.c. on random product partition feature-exchangeable
Piece-wise constant (Section 4.3) p-w.c. general random partition arbitrary
Gaussian process-based (Section 4.4)  continuous Gaussian

TABLE 2

Important classes of exchangeable array models. (Note that p.w.c. stands for piecewise constant.)

[66]. (Xu et al. referred to their model as the Infinite Hid-
den Relational Model, but we will refer to both simply by
IRM.) The IRM can be seen as a nonparametric generaliza-
tion of parametric stochastic block models introduced by
Holland, Laskey and Leinhardt [33] and Wasserman and
Anderson [65]. In the following example, we describe the
model for the special case of a {0, 1}-valued array.

EXAMPLE 4.1 (Infinite Relational Model). Under the
IRM, the generative process for a finite subarray of bi-
nary random variables X;;, i < n, j < m, is as follows:
To begin, we partition the rows (and then columns) into
clusters according to a Chinese restaurant process, or
simply CRP. (See Pitman’s excellent monograph [54] for a
in-depth treatment of the CRP and related processes.) In
particular, the first and second row are chosen to belong to
the same cluster with probability proportional to 1 and to
belong to different clusters with probability proportional
to a parameter ¢ > 0. Subsequently, each row is chosen to
belong to an existing cluster with probability proportional
to the current size of the cluster, and to a new cluster with
probability proportional to ¢. Let IT := {II;,...,II;} be
the random partition of {1,...,n} induced by this process,
where II; is the cluster containing 1, and Il is the clus-
ter containing the first row not belonging to II;, and so
on. Note that the number of clusters, k, is also a random
variable. Let II" := {II},...,II,} be the random parti-
tion of {1,...,m} induced by this process on the columns,
possibly with a different parameter ¢/ > 0 determining the
probability of creating new clusters. Next, for every pair
(k, k') of cluster indices, k < k, k' < k', we generate an
independent beta random variable 6, ;..! Finally, we gen-
erate each X;; independently from a Bernoulli distribution
with mean 0y, 1/, where i € I and j € II},. As we can
see, 0, 1 represents the probability of links arising between
elements in clusters k and %'

The Chinese restaurant process (CRP) generating II
and II' is known to be exchangeable in the sense that the
distribution of IT is invariant to a permutation of the un-
derlying set {1,...,n}. It is then straightforward to see
that the distribution on the subarray is exchangeable. In
addition, it is straightforward to verify that, were we to
have generated an n+1 x m+ 1 array, the marginal distri-
bution on the n x m subarray would have agreed with that
of the above process. This implies that we have defined a
so-called projective family and so results from probability
theory imply that there exists an infinite array and that

IFor simplicity, assume that we fix the hyperparameters of the
beta distribution, although this assumption can be relaxed if one is
careful not to break exchangeability or projectivity.

the above process described every finite subarray. <

The IRM model can be seen to be a special case of
exchangeable arrays that we will call cluster-based. We
will define this class formally, and then return to the IRM
example, re-describing it in this new language where the
exchangeability is manifest. To begin, we first introduce a
subclass of cluster-based models, called simple cluster-
based models:

DEFINITION 4.2. We say that a Bayesian model of an
exchangeable array is simple cluster-based when, for some
random function F' representing X, there are random par-
titions By, Ba, ... and C1,Cy,. .. of the unit interval [0, 1]
such that:

1. On each block A; ; := B; x C; x [0,1], F is constant.
Let f;; be the value F' takes on block A; ;.

2. The block values (f;;) are themselves an exchangeable
array, and independent from (B;) and (C}).

call an array simple cluster-based if its distribution
is. <

Most examples of simple cluster-based models in the
literature—including, e.g., the IRM—take the block values
fi;j to be conditionally i.i.d. (and so the array (f;;) is then
trivially exchangeable). As an example of a more flexible
model for (f;;), which is merely exchangeable, consider the
following:

EXAMPLE 4.3 (exchangeable link probabilities). For
every block i in the row partition, let u; be an indepen-
dent and identically distributed Gaussian random variable.
Similarly, let (v;) be an ii.d. sequence of Gaussian ran-
dom variables for the column partitions. Then, for every

row and column block 4, j, put f;; := sig(u; + v;), where
sig: R — [0,1] is a sigmoid function. The array (f;;) is
obviously exchangeable. <

Like with cluster-based models of exchangeable se-
quences, if the number of classes in each partition is
bounded, then a simple cluster-based model of an ex-
changeable array is a mixture of a finite-dimensional family
of ergodic distributions. Therefore, mixtures of an infinite-
dimensional family must place positive mass on partitions
with arbitrarily many classes.

2Those familiar with the theory of exchangeable partitions might
note that our model does not allow for singleton blocks (aka dust).
This is a straightforward generalization, but complicates the presen-
tation.
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In order to define the more general class of cluster-
based models, we relax the piecewise constant nature of the
random function. In particular, we will construct an ex-
changeable array (X;;) from a corresponding array (6;;) of
parameters, which will have a simple cluster-based model.
The parameter 6;; could, e.g., determine the probability of
an interaction X;; € {0,1}. More generally, the parame-
ters index a family of distributions on X.

To precisely define such models, we adapt the notion of
a randomization from probability theory [36]. Intuitively,
given a random variable #; in T and a probability kernel P
from T to X, we can generate a random variable Y; from
P(.,0;). The following definition generalizes this idea to
an indexed collection of random variables.

DEFINITION 4.4 (randomization). Let T be a parame-
ter space, let P be a probability kernel from T to X, and let
0 :=(0; : i € I) be a collection of random variables taking
values in T, indexed by elements of a set I. (E.g., I = N?)
We say that a collection Y := (Y; : i € I) of random vari-
ables, indexed by the same set I, is a P-randomization
of 6 when the elements Y; are conditionally independent
given 6, and

Viel: Yi |0~ P(..,0;). (4.1)

<

Thus, a generative model for the collection Y is to first
generate 0, and then, for each ¢ € I, to sample Y; indepen-
dently from the distribution P(.,#8;). It is straightforward
to prove that, if 6 is an exchangeable array and Y is a ran-
domization of #, then Y is exchangeable. We may therefore
define:

DEFINITION 4.5 (cluster-based models). We say that a
Bayesian model for an exchangeable array X := (X;;) in X
is cluster-based when X is a P-randomization of a simple
cluster-based exchangeable array 6 := (6;;) taking values
in a space T, for some probability kernel P from T to
X. We say an array is cluster-based when its distribution
is. N

The intuition is that the cluster membership of two in-
dividuals 7,7 determines a distribution, parametrized by
0;;. The actual observed relationship X;; is then a sample
from this distribution.

Let X, 6§, T and P be defined as above. We may
characterize the random function F' for X as follows: Let
¢ : Tx[0,1] — X be such that ¢(¢,U) is P( ., t)-distributed
for every t € T, when U is uniformly distributed in [0, 1].
(Such a function ¢ is sometimes called a sampling func-
tion.) Then, if G is the random function representing the
exchangeable array (6;;) then

F(z,y,2) = ¢(G(x,y,2), 2)

is a function representing X. (Recall that G(z,y,z) =
G(z,y,2') for almost all x,y,z,2" by part 1 of Defini-
tion 4.2.)

(4.2)

The next example describes a model which generates
the random partitions using a Dirichlet process.

EXAMPLE 4.6 (Infinite Relational Model continued).
We may alternatively describe the IRM distribution on ex-
changeable arrays as follows: Let P be a probability kernel
from T to X (e.g., a Bernoulli likelihood mapping [0, 1] to
distributions on {0,1}) and let H be a prior distribution
on the parameter space [0,1] (e.g., a Beta distribution,
so as to achieve conjugacy). The IRM model of an ar-
ray X := (X;;) is cluster-based, and in particular, is a
P-randomization of a simple, cluster-based exchangeable
array 6 := (6;;) of parameters in T.

In order to describe the structure of €, it suffices to
describe the distribution of the partitions (By) and (Cy)
as well as that of the block values. For the latter, the IRM
simply chooses the block values to be i.i.d. draws from the
distribution H. (While the block values can be taken to be
merely exchangeable, we have not seen this generalization
in the literature.) For the partitions, the IRM utilizes the
stick-breaking construction of a Dirichlet process [59].

In particular, let Wi, Ws,... be an i.i.d. sequence of
Beta(l, «) random variables, for some concentration pa-
rameter a > 0. For every k& € N, we then define

Pk = (1 —Wl)“-(l—Wk,l)Wk. (43)

With probability one, we have P, > 0 for every k € N and
> e, Pr = 1 almost surely, and so the sequence (P,) char-
acterizes a (random) probability distribution on N. We
then let (Bj) be a sequence of contiguous intervals that
partition of [0,1], where By is the half-open interval of
length Py. In the jointly exchangeable case, the random
partition (Cy) is usually chosen either as a copy of (By),
or as partition sampled independently from the same dis-
tribution as (By).

The underlying discrete partitioning of G induces a par-
tition on the rows and columns of the array under the IRM
model. In the IRM papers themselves, the clustering of
rows and columns is described directly in terms of a Chi-
nese restaurant process (CRP) as we did in the first IRM
example, rather than in terms of an explicit list of proba-
bilities. To connect the random probabilities (Py) for the
rows with the CRP, note that Py is the limiting fraction of
rows in the kth cluster II;, as the number of rows tends to
infinity. N

4.2. Feature-based models. Feature-based models of
exchangeable arrays have similar structure to cluster-based
models. Like cluster-based models, feature-based models
partition the rows and columns into clusters, but unlike
cluster-based models, feature-based models allow the rows
and columns to belong to multiple clusters simultaneously.
The set of clusters that a row belongs to are then called its
features. The interaction between row i and column j is
then determined by the features that the row and column
possess.

The stochastic process at the heart of most existing
feature-based models of exchangeable arrays is the Indian
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Fig 7: Typical directing random functions underlying, from left to right, 1) an IRM (where partitions correspond with a Chinese restaurant
process) with conditionally i.i.d. link probabilities; 2) a more flexible variant of the IRM with merely ezchangeable link probabilities as
in Example 4.3; 3) a LFRM (where partitions correspond with an Indian buffet process) with feature-exchangeable link probabilities as
in Example 4.10; 4) a Mondrian-process-based model with a single latent dimension; 5) a Gaussian-processed-based model with a single
latent dimension. (Note that, in practice, one would use more than one latent dimension in the last two examples, although this complicates
visualization. In the first four figures, we have truncated each of the “stick-breaking” constructions at a finite depth, although, at the

resolution of the figures, it is very difficult to notice the effect.)

buffet process, introduced by Griffiths and Ghahramani
[28]. The Indian buffet process (IBP) produces an allo-
cation of features in a sequential fashion, much like the
Chinese restaurant process produces a partition in a se-
quential fashion. In the follow example, we will describe
the Latent Feature Relational Model (LFRM) of Miller et
al. [49], one of the first nonparametric, feature-based mod-
els of exchangeable arrays. For simplicity, we will describe
the special case of a {0, 1}-valued, separately-exchangeable
array.

EXAMPLE 4.7 (Latent Feature Relational Model). Un-
der the LFRM, the generative process for a finite subarray
of binary random variables X;;, i < n, j < m, is as fol-
lows: To begin, we allocate features to the rows (and then
columns) according to an IBP. In particular, the first row is
allocated a Poisson number of features, with mean v > 0.
Each subsequent row will, in general, share some features
with earlier rows, and possess some features not possessed
by any earlier row. Specifically, the second row is also al-
located a Poisson number of altogether new features, but
with mean ~/2, and, for every feature possessed by the
first row, the second row is allocated that feature, inde-
pendently, with probability 1/2. In general, the kth row:
is allocated a Poisson number of altogether new features,
with mean v/k; and, for every subset K C {1,...,k—1} of
the previous rows, and every feature possessed by exactly
those rows in K, is allocated that feature, independently,
with probability |K|/n. (We use the same process to al-
locate a distinct set of features to the m columns, though
potentially with a different constant v/ > 0 governing the
overall number of features.)

We now describe how the features possessed by the
rows and columns come to generate the observed subarray.
First, we number the row- and column- features arbitrar-
ily, and for every row ¢ and column j, we let N;, M; C N
be the set of features they possess, respectively. For ev-
ery pair (k,k’) of a row- and column- feature, we gener-
ate an independent and identically distributed Gaussian
random variable wy /. Finally, we generate each X; ;
independently from a Bernoulli distribution with mean
sig(Xken, Zk,eMj Wg,kr). Thus a row and column that

possess feature k and k', respectively, have an increased
probability of a connection as wy, » becomes large and pos-
itive, and a decreased probability as wy ;- becomes large
and negative.

The exchangeability of the subarray follows from the
exchangeability of the IBP itself. In particular, define the
family of counts Iy, N C {1,...,n}, where IIy is the
number of features possessed by exactly those row in V.
We say that II := (IIy) is a random feature allocation
for {1,...,n}. (Let II' be the random feature allocation for
the columns induced by the IBP.) The IBP is exchangeable
is the sense that

(Iy) = (yn))

for every permutation 7 of {1,...,n}, where o(N) :=
{o(n) : n € N}. Moreover, the conditional distribution
of the subarray given the feature assignments (N;, M;) is
the same as the conditional distribution given the feature
allocations (IIy,IT},). It is then straightforward to ver-
ify that the subarray is itself exchangeable. Like with the
IRM example, the family of distributions on subarrays of
different sizes is projective, and so there exists an infinite
array and the above process describes the distribution of
every subarray. <

(4.4)

We will cast the LFRM model as a special case of a
class of models that we will call feature-based. From the
perspective of simple cluster-based models, simple feature-
based models also have a block structured representing
function, but relax the assumption that values of each
block form an exchangeable array. To state the defini-
tion of this class more formally, we begin by generalizing
the notion of a partition of [0,1]. (See [16] for recent work
characterizing exchangeable feature allocations.)

DEFINITION 4.8 (feature allocation). Let U be
a uniformly-distributed random variable and E :=
(E1, Es,...) a sequence of (measurable) subsets of [0,1].
Given E, we say that U has feature n when U € FE,,. We
call the sequence E a feature allocation if

P{UEUisn B} >1 as n—oo.  (45)
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The definition probably warrants some further explana-
tion: A partition is a special case of a feature allocation,
in which the sets F, are disjoint and represent blocks of
a partition. The relation U € Ej then indicates that an
object represented by the random variable U is in block
k of the partition. In a feature allocation, the sets FEj
may overlap. The relation U € E,, now indicates that the
object has feature n. Because the sets may overlap, the
object may possess multiple features. However, condition
Eq. (4.5) ensures that the number of features per object
remains finite (with probability 1).

A feature allocation induces a partition if we equate any
two objects that possess exactly the same features. More
carefully, for every subset N C N of features, define

By =) En () (0, 1\Ej) .

i€EN JEN

(4.6)

Then, two objects represented by random variables U and
U' are equivalent iff U,U" € E(y) for some finite set N C
N. As before, we could consider a simple, cluster-based
representing function where the block values are given by
an (fn,m), indexed now by finite subsets NV, M C N. Then
fn.am would determine how two objects relate when they
possess features N and M, respectively.

However, if we want to capture the idea that the re-
lationships between objects depend on the individual fea-
tures the objects possess, we would not want to assume
that the entries of fy s formed an exchangeable array,
as in the case of a simple, cluster-based model. E.g., we
might choose to induce more dependence between fn, s
and fns pr when NNN' # () than otherwise. The following
definition captures the appropriate relaxation of exchange-
ability:

DEFINITION 4.9 (feature-exchangeable array). Let
Y := (Yn,m) be an array of random variables indexed by
pairs N, M C N of finite subsets. For a permutation 7 of N
and N C N, write 7(N) := {n(n) : n € N} for the image.
Then, we say that Y is feature-exchangeable when

(Yn,m) = (Ya(ny,m(a0))s (4.7)

for all permutations 7 of N. <

Informally, an array Y indexed by sets of features is
feature-exchangeable if its distribution is invariant to per-
mutations of the underlying feature labels (i.e., of N). The
following is an example of a feature-exchangeable array,
which we will use when we re-describe the Latent Feature
Relational Model in the language of feature-based models:

EXAMPLE 4.10 (feature-exchangeable link probabili-
ties). Let w := (w;;) be a conditionally i.i.d. array of
random variables in R, and define 6 := (On,a) by

Onv = Sig(ZieN ZjeM wij), (4.8)

where sig: R — [0, 1] maps real values to probabilities via,
e.g., the sigmoid or probit functions. It is straightforward
to verify that 6 is feature-exchangeable. <

We can now define simple feature-based models:

DEFINITION 4.11.  'We say that a Bayesian model of an
exchangeable array X is simple feature-based when, for
some random function F representing X, there are random
feature allocations B and C' of the unit interval [0, 1] such
that, for every pair N, M C N of finite subsets, F' takes
the constant value fx ar on the block

AN,JV[ = B(N) X C(M) X [0, 1], (4.9)
and the values f := (fn ) themselves form a feature-
exchangeable array, independent of B and C. We say an
array is simple feature-based if its distribution is. <

We can relate this definition back to cluster-based mod-
els by pointing out that simple feature-based arrays are
simple cluster-based arrays when either i) the feature al-
locations are partitions or ii) the array f is exchangeable.
The latter case highlights the fact that feature-based ar-
rays relax the exchangeability assumption of the underly-
ing block values.

As in the case of simple cluster-based models, nonpara-
metric simple feature-based models will place positive mass
on feature allocations with an arbitrary number of distinct
sets. As we did with general cluster-based models, we will
define general feature-based models as randomizations of
simple models:

DEFINITION 4.12 (feature-based models). We say that
a Bayesian model for an exchangeable array X := (X;;)
in X is feature-based when X is a P-randomization of a
simple, feature-based, exchangeable array 6 := (0;;) taking
values in a space T, for some probability kernel P from T to
X. We say an array is feature-based when its distribution
is. <

Comparing Definitions 4.5 and 4.12, we see that the
relationship between random functions representing 6 and
X are the same as with cluster-based models. We now
return to the LFRM model, and describe it in the language
of feature-based models:

EXAMPLE 4.13 (Latent Feature Relational Model con-
tinued). The random feature allocations underlying the
LFRM can be described in terms of so-called “stick-
breaking” constructions of the Indian buffet process. One
of the simplest stick-breaking constructions, and the one
we will use here, is due to Teh, Gortir, and Ghahramani
[61]. (See also [63], [52] and [53].)

Let Wy, Wa,... be an i.i.d. sequence of Beta(c, 1) ran-
dom variables for some concentration parameter o > 0.
For every n, we define P, := H?Zl W;. (The relationship
between this construction and Eq. (4.3) highlights one of
several relationships between the IBP and CRP.) It follows



that we have 1 > P, > P, > -.- > 0. The allocation of
features then proceeds as follows: for every n € N, we as-
sign the feature with probability P,, independently of all
other features. It can be shown that ) P, is finite with
probability one, and so every object has a finite number of
features with probability one.

We can describe a feature allocation (B,,) corresponding
with this stick-breaking construction of the IBP as follows:
Put B; = [0, P1), and then inductively, for every n € N,
put

2" —1
Buyr = [bj, (bjs1 = bj) - Pas1)

Jj=1

(4.10)

where B, = [b1,b2) U [b3,b4) U+ U [ban_1,ban). (As one
can see, this representation obscures the conditional inde-
pendence inherent in the feature allocation induced by the
IBP.)

Having described the distribution of the random feature
allocations underlying the LFRM model, it suffices to spec-
ify the distribution of the underlying feature-exchangeable
array and the probability kernel P of the randomization.
The latter is simply the map p — Bernoulli(p) taking a
probability to the Bernoulli distribution, and the former
is the feature-exchangeable array of link probabilities de-
scribed in Example 4.10. <

4.3. Piece-wise constant models. Simple partition- and
feature-based models have piecewise-constant structure,
which arises because both types of models posit prototyp-
ical relationships on the basis of a discrete set of classes
or features assignments, respectively. More concretely, a
partition of [0, 1] is induced by partitions of [0, 1].

An alternative approach is to consider partitions of
[0,1]3 directly, or partitions of [0, 1]* induced by partitions
of [0,1]2. Rather than attempting a definition capturing a
large, natural class of such models, we present an illustra-
tive example:

ExAMPLE 4.14 (Mondrian-process-based models [57]).
A Mondrian process is a partition-valued stochastic process
introduced by Roy and Teh [57]. (See also Roy [56, Chp. V]
for a formal treatment.) More specifically, a homoge-
neous Mondrian process on [0, 1]? is a continuous-time
Markov chain (M;: t > 0), where, for every time t > 0, M,
is a floorplan-partition of [0, 1]>—i.e., a partition of [0, 1]?
comprised of axis-aligned rectangles of the form A = BxC,
for intervals B,C C [0,1]. It is assumed that M is the
trivial partition containing a single class.

Every continuous-time Markov chain is characterized by
the mean waiting times between jumps and the discrete-
time Markov process of jumps (i.e., the jump chain) em-
bedded in the continuous-time chain. In the case of a Mon-
drian process, the mean waiting time from a partition com-
posed of a finite set of rectangles {By x C1,...,Br x Ci}
is Z§:1(‘Bj| + |C;]). The jump chain of the Mondrian
process is entirely characterized by its transition probabil-
ity kernel, which is defined as follows: From a partition
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{B; x C1,..., By x Ci} of [0,1]2, we choose to “cut” ex-
actly one rectangle, say B; x C;, with probability propor-
tional to | B;|+|C}|; Choosing j, we then cut the rectangle
vertically with probability proportional to |C;| and hori-
zontally with probability proportional to |B;|; Assuming
the cut is horizontal, we partition B; into two intervals
Bj 1 and Bj 2, uniformly at random; The jump chain then
transitions to the partition where B; x Cj is replaced by
Bj1 x C; and Bj2 x Cj; The analogous transformation
occurs in the vertical case.

As is plain to see, each partition is produced by a se-
quence of cuts that hierarchically partition the space. The
types of floorplan partitions of this form are called guil-
lotine partitions. Guillotine partitions are precisely the
partitions represented by kd-trees, the classical data struc-
ture used to represent hierarchical, axis-aligned partitions.

The Mondrian process possesses several invariances that
allow one to define a Mondrian process M; on all of
R2. The resulting process is no longer a continuous-time
Markov chain. In particular, for all ¢ > 0, M} has a count-
ably infinite number of classes with probability one. Roy
and Teh [57] use this extended process to produce a non-
parametric prior on random functions as follows:

Let ¢ : (0,1] — R be the embedding ¢(z) = —logz,
let M be a Mondrian process on R?, and let (A,,) be the
countable set of rectangles comprising the partition of R?
given by M, for some constant ¢ > 0. A random func-
tion F : [0,1]® — [0,1] is then defined by F(z,y,2) = v¥n
where n is such that A, > (¢(z),é(y)), and where (1),,)
is an exchangeable sequence of random variables in X, in-
dependent of M. As usual, one generally considers a ran-
domization. In particular, Roy and Teh present results in
the case where the 1,, are Beta random variables, and the
data are modeled via a Bernoulli likelihood. An interest-
ing property of the above construction is that the parti-
tion structure along any axis-aligned slice of the random
function agrees with the stick-breaking construction of the
Dirichlet process, presented in the IRM model example.
(See [57] and [56] for more details.) q

4.4. Gaussian-process-based models. Up until now, we
have discussed classes of models for exchangeable arrays
whose random functions have piece-wise constant struc-
ture. In this section we briefly discuss a large and impor-
tant class of models that relax this restriction by modeling
the random function as a Gaussian process.

We begin by recalling the definition of a Gaussian pro-
cess [e.g. 55]. Let G := (G;: i € I) be an indexed collection
of R-valued random variables. We say that G is a Gaus-
sian process on I when, for all finite sequences of indices
i1,...,1 € I, the vector (G(i1),...,G(ix)) is Gaussian,
where we have written G(i) := G; for notational conve-
nience. A Gaussian process is completely specified by two
function-valued parameters: a mean function p: I — R,
satisfying

u(i) = E(G(i)),

and a positive semidefinite covariance function x: I x

iel, (4.11)
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I — R, satisfying

k(i,7) = cov(G(i), G(J)). (4.12)

DEFINITION 4.15 (Gaussian-process-based exchange-
able arrays). We say that a Bayesian model for an ex-
changeable array X := (X;;) in X is Gaussian-process-
based when, for some random function F' representing X,
the process F' = (Fyy.; ¢,y,2 € [0,1]) is Gaussian on
[0,1]3. We will say that an array X is Gaussian-process-
based when its distribution is. N

In the language of Eq. (3.17), a Gaussian-process-based
model is one where a Gaussian process prior is placed on
the random function F. The definition is stated in terms of
the space [0, 1]* as domain of the uniform random variables
U to match our statement of the Aldous-Hoover theorem
and of previous models. In the case of Gaussian processes,
however, it is arguably more natural to use the real line
instead of [0,1], and we note that this is indeed possible:
Given an embedding ¢ : [0,1]®> — J and a Gaussian process
G on J, the process G’ on [0, 1]* given by G, | _ = Gy (a,y.2)
is Gaussian. More specifically, if the former has a mean
function p and covariance function , then the latter has
mean p o ¢ and covariance k o (¢ ® ¢). We can therefore
talk about Gaussian processes on spaces J that can be put
into correspondence with the unit interval. Note that the
particular embedding also induces a distribution on the J.

The above definition also implies that the array X is
conditionally Gaussian, ruling out, e.g., the possibility of
{0, 1}-valued arrays. This restriction is overcome by con-
sidering randomizations of Gaussian-process-based arrays.
Indeed, in the {0,1}-valued case, the most common type
of randomization can be described as follows:

DEFINITION 4.16 (noisy sigmoidal/probit likelihood).
For every mean m € R, variance v € R,, and sigmoidal
function o : R — [0, 1], we can construct a probability ker-
nel L from R to {0,1} as follows: for each real r € R, let
L(r) be the distribution of Bernoulli random variable with
mean IE(J(T + 5)), where £ is itself Gaussian with mean m
and variance v. <

Many of the most popular parametric models for ex-
changeable arrays of random variables can be constructed
as (randomizations of ) Gaussian-process-based arrays. For
a catalog of such models and several nonparametric vari-
ants, as well as their covariance functions, see [43]. Here
we will focus on the parametric eigenmodel, introduced
by Hoff [31, 32], and its nonparametric cousin, introduced
Xu, Yan and Qi [67]. To simplify the presentation, we will
consider the case of a {0, 1}-valued array.

EXAMPLE 4.17 (Eigenmodel [31, 32]). In the case
of a {0,1}-valued array, both the eigenmodel and its
nonparametric extension can be interpreted as an L-
randomizations of a Gaussian-process-based array 6 :=

(0:5), where L is given as in Definition 4.16 for some mean,
variance and sigmoid. To complete the description, we de-
fine the Gaussian processes underlying 6.

The eigenmodel is best understood in terms of a zero-
mean Gaussian process G on R? x R?. (The correspond-
ing embedding ¢ : [0,1]> — R? x R? is ¢(x,y,2) =
®~1(x)® 1 (y), where ®~! is defined so that ®~1(U) € R?
is a vector independent doubly-exponential (aka Lapla-
cian) random variables, when U is uniformly distributed
in [0,1].) The covariance function x : RY x R® — R, of
the Gaussian process G underlying the eigenmodel is sim-

ply

where (.,.): R? x R — R denotes the dot product, i.e.,
Euclidean inner product. This corresponds with a more
direct description of G: in particular,

G(z,y) = (z,y)p (4.14)

where A € R™? is a d x d array of independent standard
Gaussian random variables and (z,y) , = me TnYmAn,m
is an inner product. N

A nonparametric counterpart to the eigenmodel was in-
troduced by Xu et al. [67]:

ExAMPLE 4.18. The Infinite Tucker Decomposition
model [67] defines the covariance function on R% x R? to
be

k(u,v;z,y) = K (u, 2)' (v, y), w,v,z,y €RY (4.15)
where £ : R? x R — R is some positive semi-definite
covariance function on R%. This change can be understood
as generalizing the inner product in Eq. (4.13) from R?
to a (potentially, infinite-dimensional) reproducing kernel
Hilbert space (RKHS). In particular, for every such &',
there is an RKHS H such that

K/(I, y) = <¢(I), ¢(y)>7{7

z,y € R (4.16)

<

A related nonparametric model for exchangeable arrays,
which places fewer restrictions on the covariance structure
and is derived directly from the Aldous-Hoover represen-
tation, is described in [43].

5. Limits of graphs. We have already noted that
the parametrization of random arrays by functions in the
Aldous-Hoover theorem is mot unique. Our statement of
the theorem also lacks an asymptotic convergence result
such as the convergence of the empirical measure in de
Finetti’s theorem. The tools to fill these gaps have only
recently become available in a new branch of combinatorics
which studies objects known as graph limits. This sec-
tion summarizes a few elementary notions of this rapidly



17

EE B
An N
EE B

Fig 8: For graph-valued data, the directing random function F' in the Aldous-Hoover representation can be regarded as a limit of adjacency
matrices: The adjacency matrix of a graph of size n can be represented as a function on [0, 1]2 by dividing the square into n x n patches
of equal size. On each patch, the representing function is constant, with value equal to the corresponding entry of the adjacency matrix.
(In the figure, a black patch indicates a value of one and hence the presence of an edge.) As the size of the graph increases, the subdivision
becomes finer, and converges to the function depicted on the right for n — oco. Convergence is illustrated here for the two functions from
Fig. 5. Since the functions are equivalent, the two random graphs within each column are equal in distribution.

emerging field and shows how they apply to the Aldous-
Hoover theorem for graphs.

Graph limit theory is based on a simple idea: Given a
finite graph with n vertices, we subdivide [0,1]? into n x n
square patches, resembling the n x n adjacency matrix.
We then define a function w, with constant value 0 or
1 on each patch, equal to the corresponding entry of the
adjacency matrix. A plot of w, is a checkerboard image
as in Fig. 8. If we increase the size n of the graph, the
resulting functions w,, are defined on finer and finer sub-
divisions of [0,1]2, and it is not hard to imagine that they
converge to a (possibly smooth) function w : [0, 1]2 — [0, 1]
as n — oo. This function is interpreted as the limit of the
graph sequence (g, )nen. There are two important ways to
give a precise definition of this notion of convergence, and
we will briefly discuss both definitions and some of their
consequences.

5.1. Metric definition of convergence. The technically
most convenient way to define convergence is, whenever
possible, using a metric: If d is a distance measure, we can
define w as the limit of w, if d(w,w,) — 0 as n — oo.
The metric on functions which has emerged as the “right”
choice for graph convergence is called the cut metric, and
is defined as follows: We first define a norm as

sup (5.1)

S,7C[0,1]

/ w(z, y)du()du(y) -
SxT

[wllg =

The measure p in the integral is Lebesgue measure
[0,1], i.e., the distribution of the uniform variables U;
in Eq. (3.3). S and T are arbitrary measurable sets.
Intuitively—if we assume for the moment that w can in-
deed be thought of as a limiting adjacency matrix—S and
T are subsets of nodes. The integral (5.1) measures the
total number of edges between S and 7" in the “graph” w.

Since a partition of the vertices of a graph into two sets is
called a cut, ||.|[| is called the cut norm. The distance
measure defined by d(w,w’) := [Jw — w’||; is called the
cut distance.

Suppose w and w’ are two distinct functions which
parametrize the same random graph. The distance d in
general perceives such functions as different: The func-
tions in Fig. 8, for instance, define the same graph, but
have non-zero distance under d,. Hence, if we were to
use dg, to define convergence, the two sequences of graphs
in the figure would converge to two different limits. We
therefore modify d, by defininig:

g

og(w,w') = inf d (w,w' o(p®¢)). (5.2)

# MPT

MPT is the set of measure-preserving transformations (see
Section 3.4). In words, before we measure the distance
between w and w’ using d, we push w’ through the MPT
that best aligns w’ to w. In Fig. 5, this optimal ¢ would
simply be the mapping which reverses the permutation of
blocks, so that the two functions would look identical.

DEFINITION 5.1. We say that a sequence (g )nen Of
graphs converges if 0 (wg,,w) — 0 for some measurable
function w : [0,1]> — [0,1]. The function w is called the
limit of (g,), and often referred to as a graph limit or
graphon. N

The function d is called the cut pseudometric: It is
not an actual metric, since it can take value 0 for two dis-
tinct functions. It does, however, have all other properties
of a metric. By definition, 6 (w,w") = 0 nolds if and only
if w and w’ parametrize the same random graph.

The properties of 6, motivate the definition of a “quo-
tient space”: We begin with the space W of all graphons,
i.e., all measurable functions [0, 1]2 — [0, 1], and regard two
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functions w, w’ as equivalent if 6 (w, w") = 0. The equiva-
lence classes form a partition of W. We then define a new
space W by collapsing each equivalence class to a single
point. Each element @ € W corresponds to all functions
in one equivalence class, and hence to one specific random
graph distribution. The pseudometric d, turns into a met-

ric on W. The metric space (\/7\\7, ) is one of the central
objects of graph limit theory and has remarkable analytic
properties [45].

5.2. Probabilistic definition of convergence. A more
probabilistic definition reduces convergence of non-random
graphs to the convergence of random graphs by means of
sampling: We use each non-random graph g, to define the
distribution of a random graph, and then say that (g,)
converges if the resulting distributions do.

More precisely, let g be a finite graph with vertex set
V(g). We can sample a random graph G(k,g) of size k
by sampling k vertices of g uniformly at random, without
replacement. We then construct G(k,g) as the induced
subgraph (the graph consisting of the randomly selected
subset of vertices and all edges between them which are
present in g.) Formally, this procedure is well-defined even
if £ > |V(g)|, in which case G(k, g) = g with probability
1. Clearly, the distribution of G(k, g) is completely defined
by g.

DEFINITION 5.2. Let (g,) be a sequence of graphs, and
let P(k,gn) be the distribution of G(k,g,). We say that
the graph sequence (g,) converges if the sequence of dis-
tributions (P(k, gn))nen converges for all k (in the sense
of weak convergence of probability measures). q

We can obviously as why we should prefer one particu-
lar definition of convergence over another one; remarkably,
both definitions given above, and also several other defini-
tions studied in the literature, turn out to be equivalent:

Facr 5.3. Definitions 5.1 and 5.2 are equivalent:
d (wg, ,w) — 0 holds if and only if P(k,g,) converges
weakly for all k. <

5.3. Unique parametrization in the Aldous-Hoover theo-
rem. The non-uniqueness problem in the Aldous-Hoover
theorem is that each random graph is parametrized by an
infinite number of distinct functions (Section 3.4). Since
the space W of unique graph limits contains precisely one
element for each each exchangeable random graph distri-
bution, we can obtain a unique parametrization by using
T:=Wasa parameter space: If w € W is a graphon and
w the corresponding element of W-——the element to which
w was collapsed in the definition of W-—we define a prob-
ability kernel p(., @) as the distribution parametrized by
w according to the uniform sampling scheme Eq. (3.4).
Although the existence of such a probability kernel is not
a trivial fact, it follows from a technical result of Orbanz

and Szegedy [51]. The Aldous-Hoover theorem for a ran-
dom graph G can now be written as a mixture

P(Ge )= /w p(., B)(dd) , (5.3)

in analogy to the de Finetti representation. As for the
other representation results, we now also obtain a diagram

Q—% g2 M) >P——W

U

© (5.4)

where T-1(w) = p(.,@). In this case, G is a random in-
finite graph; observing a finite sample means observing a
finite subgraph G,, of G.

The convergence of the “empirical graphons”, the
checkerboard functions w,, to a graph limit corresponds
to the convergence of the empirical measure in de Finetti’s
theorem and of the relative block sizes in Kingman’s the-
orem. The set of graph limits is larger than the set of
graphs: Although each graph ¢ has a representation as
a measurable function wj : [0,1]> — [0,1], not each such
function represents a graph. Each is, however, the limit
of a sequence of graphs. The analogy in the de Finetti
case is that not each probability distribution represents an
empirical measure (since empirical measures are discrete),
but every probability measure is the limit of a sequence of
empirical measures.

5.4. Regularity and Concentration. Asymptotic statis-
tics and empirical process theory provides a range of con-
centration results which show that the empirical distri-
bution converges with high probability. These results re-
quire independence properties, but are model free; adding
model assumptions then typically yields more bespoke re-
sults with stronger guarantees. Graph limit theory pro-
vides a similar type of results for graphs, which are again
model free, and based on exchangeability.

Underlying these ideas is one of the deepest and per-
haps most surprising results of modern graph theory, Sze-
meredi’s regularity lemma, which shows that for every very
large graph g, there is a small, weighted graph ¢ that sum-
marizes all essential structure in g. The only condition is
that g is sufficiently large. In principle, this means that
g can be used as an approximation or summary of g, but
unfortunately, the result is only valid for graphs which are
much larger than possible in most conceivable applications.
There are, however, weaker forms of this result which hold
for much smaller graphs.

To define § for a given graph g, we proceed as follows:
Suppose II := {Vi,...,V,} is a partition of V(g) into k
sets. For any two sets V; and Vj, we define p;; as the
probability that two vertices v € V; and v/ € Vj, each
chosen uniformly at random from its set, are connected by
an edge. That is,

p,, 1 1 edees between Vi, V;

(5.5)



The graph gry is now defined as the weighted graph with
vertex set {1,...,k} and edge weights p;; for edge (i, 7).
To compare this graph to g, it can be helpful to blow it up
to a graph gy of the same size as g, constructed as follows:

e Each node i is replaced by a clique of size |V;| (with
all edges weighted by 1).

e For each pair V; and V}, all possible edges between the
sets are inserted and weighted by p;;.

If we measure how much two graphs differ in terms of
the distance d defined above, g can be approximated by
g as follows:

THEOREM 5.4 (Weak regularity lemma [27]). Let k €
N and let g be any graph. There is a partition I of V(g)

into k sets such that d (g, gn) < 2(y/log(k))~*. O

This form of the result is called “weak” since it uses a
less restrictive definition of what it means for g and gp
to be close then Szemerédi’s original result. The weaker
hypothesis makes the theorem applicable to graphs that
are, by the standards of combinatorics, of modest size.

A prototypical concentration result based on Theo-
rem 5.4 is the following:

THEOREM 5.5 ([44, Theorem 8.2]). Let f be a real-
valued function on graphs, which is smooth in the sense
that |f(g) — f(9')| < d(g,9") for any two graphs g and
g’ defined on the same vertex set. Let G(k,g) be a ran-
dom graph of size k sampled uniformly from g (see Sec-
tion 5.2). Then the distribution of f(G(k,g)) concentrates
around some value fy € R, in the sense that

2
—0}<2*’“.

o (5.6)

B{|£(G(k,g)) — fol >
0

A wide range of similar results for graphs and other ran-
dom structures is available in graph limit theory and com-
binatorics, and collectively known under the term property
testing. Lovasz [45, Chapter 15] gives a clear and author-
ative exposition.

6. Exchangeability in higher-dimensional arrays.
The theory of exchangeable arrays extends beyond 2-
dimensional arrays, and, indeed, some of the more exciting
implications and applications of the theory rely on the gen-
eral results. In this section we begin by defining the natural
extension of (joint) exchangeability to higher dimensions,
and then give higher-dimensional analogues of the theorems
of Aldous and Hoover due to Kallenberg. These theorems
introduce exponentially-many additional random variables
as the dimension increases, but a theorem of Kallenberg’s
shows that only a linear number are necessary to produce
an arbitrarily good approximation. The presentation owes

much to Kallenberg [35].
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DEFINITION 6.1 (jointly exchangeable d-arrays). Let
(Xk,....k,) be a d-dimensional array (or simply d-array)
of random variables in X. We say that X is jointly ex-
changeable when

(Xkl,m,kd) = (er(kl) ..... w(kd))

for every permutation 7 of N. <

(6.1)

As in the 2-dimensional representation result, a key
ingredient in the characterization of higher-dimensional
jointly exchangeable d-arrays will be an indexed collection
U of i.i.d. latent random variables. In order to define the
index set for U, let N be the space of multisets J C N of
cardinality |J| < d. E.g., {{1,1,3}} € N3 C N%. Rather
than two collections—a sequence (U;) indexed by N, and
a triangular array (Uy; ;) indexed by multisets of cardi-
nality 2—we will use a single i.i.d. collection U indexed by
elements of N?. For every I C [d] := {1,...,d}, we will
write k7 for the multiset

({k;:ie I} (6.2)

and write

(Us,; T €219\ 0) (6.3)
for the element of the function space [0, 1]2[(”\9) that maps
each nonempty subset I C [d] to the real Uy , i.e., the

element in the collection U indexed by the multiset k; €
NI € N4,

THEOREM 6.2 (Aldous, Hoover). Let U be an i.i.d. col-
lection of uniform random variables indexed by multisets
Ne. A random d-array X = (Xp; k € N%) is jointly ex-
changeable if and only if there is random measurable func-
tion F : |0, 1]2[0”\@ — X such that

(X ke N = (P(U;; Te2\0); keNT).  (6.4)

O

When d = 2, we recover Theorem 3.4 characterizing
two-dimensional exchangeable arrays. Indeed, if we write
Ui := Uysy and Uy := Uy, 4y for notational convenience,
then the right hand side of Eq. (6.4) reduces to

(F'(Ui, U, Uij); 4,5 € N) (6.5)
for some random F : [0,1]*> — X. When d = 3, we instead
have

(F(U;,U;j, U, Uiz, Ui, Ujie, Uiji); 1,5,k € N) (6.6)

for some random F : [0,1]” — X, where we have addi-
tionally taken Ujjx, := Uy j xy for notational convenience.
(One may be concerned with the apparent exponential
blowup in the number of random variables; We will later
describe a result due to Kallenberg that shows that, in a
certain technical sense which we will define, the distribu-
tions of d-arrays can be arbitrarily well approximated with
a random function on [0, 1]%.)
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6.1. Separately exchangeable d-arrays. As in the two-
dimensional case, arrays with certain additional symme-
tries can be treated as special cases. In this section, we
consider separate exchangeability in the setting of d-arrays,
and in the next section we consider further generalizations.
We begin by defining:

DEFINITION 6.3 (separately exchangeable d-arrays).
We say that d-array X is separately exchangeable when

(Xerrookea) = (KXo () ma (o)) (6.7)

for every collection 7y, ..., 74 of permutations of N. N

For every J C [d], let 1; denote its characteristic func-
tion (i.e., 1;(z) =1 when x € J and 0 otherwise), and let
the vector ky € Z% :={0,1,2,...}" be given by

kJ = (kl 1J(1),...,/€d ].J(d)) (68)

In order to represent separately exchangeable d-arrays, we
will use a collection U of i.i.d. uniform random variables
indexed by vectors Zi. Similarly to above, we will write
(Up,; T e2[\ p) (6.9)
for the element of the function space [0, 1]2[d]\® that maps
each nonempty subset I C [d] to the real Uy,, i.e., the

element in the collection U indexed by the vector k;. Then
we have:

COROLLARY 6.4. Let U be an i.i.d. collection of uni-
form random variables indexed by vectors Zi. A ran-
dom d-array X := (Xg; k € N?) is separately exchange-
able if and only if there is random measurable function
F: 0, 1]2[41\@ — X such that

(Xp; ke NY) L (F(Uy,; Te29\0); keN?). (6.10)

O

We can consider the special cases of d = 2 and d = 3
arrays. Then we have, respectively,

(F(Uio, Uy, Uij); i,j € N) (6.11)

for some random F : [0,1]*> — X; and

(F'(Uioo, Uojo, Uook, Usjo, Uiok, Uojk, Uijk); @, j, k € N)
(6.12)

for some random F : [0,1]” — X. As we can see, jointly ex-
changeable arrays, which are required to satisfy fewer sym-
metries than their separately exchangeable counterparts,
may take Us;;0 = Unsj = Ujoj = Ujs0 = ... Indeed, one can
show that these additional assumptions make jointly ex-
changeable arrays a strict superset of separately exchange-
able arrays, for d > 2.

6.2. Further generalizations. In applications, it is com-
mon for the distribution of an array to be invariant to per-
mutations that act simultaneously on some but not all of
the dimensions. E.g., if the first two dimensions of an ar-
ray index into the same collection of users, and the users
are a priori exchangeable, then a sensible notion of ex-
changeability for the array would be one for which these
first two dimensions could be permuted jointly together,
but separately from the remaining dimensions.

More generally, we consider arrays that, given a parti-
tion of the dimensions of an array into classes, are invariant
to permutations that act jointly within each class and sep-
arately across classes. More carefully:

DEFINITION 6.5 (m-exchangeable d-arrays). Let m =
{I,...,I,} be a partition of [d] into disjoint classes, and
let p = (p’; I € 7) be a collection of permutations of N,
indexed by the classes in . We say that a d-array X is
m-exchangeable when

(Xky oo kai b € N 2 (X (k) pra(ra); b € NT),

(6.13)
for every collection p of permutations, where m; denotes
the subset I € m containing i. <

We may now cast both jointly and separately exchange-
able arrays as m-exchangeable arrays for particular choices
of partitions 7. In particular, when = = {[d]} we recover
joint exchangeability, and when 7 = {{1},...,{d}}, we re-
cover separate exchangeability. Just as we characterized
jointly and separately exchangeable arrays, we can charac-
terize m-exchangeable arrays.

Let 7 be a partition of [d]. In order to describe the
representation of m-exchangeable d-arrays, we will again
need a collection U of i.i.d. uniform random variables, al-
though the index set is more complicated than before: Let
V(r) = X;exNUI denote the space of functions taking
classes I € 7 to multisets J C N of cardinality J < |I].
We will then take U to be a collection of i.i.d. uniform
random variables indexed by elements in V(7).

It is worth spending some time giving some intuition for
V(r). When 7 = {[d]}, V(r) is equivalent to the space N%
of multisets of cardinality no more than d, in agreement
with the index set in the jointly exchangeable case. The
separately exchangeable case is also instructive: there m =
{{1},...,{d}} and so V() is equivalent to the space of
functions from [d] to N', which may again be seen to be
equivalent to the space Zi of vectors, where 0 encodes
the empty set @) € N!' N N°. For a general partition 7
of [d], an element in V(7) is a type of generalized vector,
where, for each class I € 7w of dimensions that are jointly
exchangeable, we are given a multiset of indices.

For every I C [d], let kr; € V(r) be given by

krr(J) = krag,

where k; is defined as above for jointly exchangeable ar-
rays. We will write

(U;,; Te29\9)

Jem, (6.14)

(6.15)



for the element of the function space [0, 1]2[d]\® that maps
each nonempty subset I C [d] to the real Uj,_, i.e., the ele-
ment in the collection U indexed by the generalized vector

kr.r. Then we have:

COROLLARY 6.6 (Kallenberg [35]). Let m be a partition
of [d], and let U be an i.i.d. collection of uniform random
variables indexed by generalized vectors V(m). A random
d-array X = (Xy; k € N%) is w-exchangeable if and only
if there is random measurable function F : [0, 1]2[d]\® - X
such that

(Xp; ke N = (P(U;, 5 Te2\0); keN'). (6.16)

O

6.3. Approximations by simple arrays. These repre-
sentational results require a number of latent random
variables exponential in the dimension of the array, i.e.,
roughly twice as many latent variables are needed as the
entries generated in some subarray. Even if a d-array is
sparsely observed, each observation requires the introduc-
tion of potentially 2¢ variables. (In a densely observed
array, there will be overlap, and most latent variables will
be reused.)

Regardless of whether this blowup poses a problem for
a particular application, it is interesting to note that ex-
changeable d-arrays can be approximated by arrays with
much simpler structure, known as simple arrays.

DEFINITION 6.7 (simple d-arrays). Let U = (Ul; I €
7,k € N) be an i.i.d. collection of uniform random vari-
ables. We say that a m-exchangeable d-array X is simple
when there is a random function F': [0, 1] — X such that

(Xp; keNY = (F(U,...,USY); keNY),  (6.17)

where 7; is defined as above. <

Again, it is instructive to study special cases: in the

1}

jointly exchangeable case, taking U; := U, j{[d , we get

(F(Uk,,...,Up,); k € N9 (6.18)

and, in the separately exchangeable case, we get

(F(UR,,...,UL); keN?), (6.19)
taking U; = U]{i}. We may now state the relationship
between general arrays and simple arrays:

THEOREM 6.8 (simple approximations, Kallenberg [35,
Thm. 2]). Let X be a m-exchangeable d-array. Then
there exists a sequence of simple mw-exchangeable arrays
X', X2 ... such that, for all finite sub-arrays X; =
(Xp;k € J), J C N the distributions of X; and X7 are
mutually absolutely continuous, and the associated densi-
ties tend uniformly to 1 as n — oo for fized J. 0
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7. Sparse random structures and networks. Fz-
changeable random structures are not “sparse”. In an ex-
changeable infinite graph, for example, the expected number
of edges attached to each node is either infinite or zero. In
contrast, graphs representing network data typically have
a finite number of edges per vertex, and exhibit properties
like power-laws and “small-world phenomena”, which can
only occur in sparse graphs. Hence, even though exchange-
able graph models are widely used in network analysis, they
are inherently misspecified. We have emphasized previously
that most Bayesian models are based on exchangeability.
The lack of sparseness, however, is a direct mathematical
consequence of exchangeability. Thus, networks and sparse
random structures pose a problem that seems to require
genuinely non-exchangeable models. The development of a
coherent theory for sparse random graphs and structures is,
despite intense efforts in mathematics, a largely unsolved
problem, and so is the design of Bayesian models for net-
works data. In this section, we make the problem more
precise and describe how, at least in principle, exchange-
ability might be substituted by other symmetry properties.
We also briefly summarize a few specific results on sparse
graphs. The topic raises a host of challenging questions to
which, in most cases, we have no answers.

7.1. Dense vs Sparse Random Structures. In an ex-
changeable structure, events either never occur, or they
occur infinitely often with a fixed, constant (though un-
known) probability. The simplest example is an exchange-
able binary sequence: Since the order of observations is ir-
relevant, the probability of observing a one is the same for
all entries in the sequence. If this probability is p € [0, 1],
and we sample infinitely often, the fraction of ones in the
infinite sequence will be precisely p. Therefore, we either
observe a constant proportion of ones (if p > 0) or no ones
at all (if p = 0). In an exchangeable graph, rather than
ones and zeros, we have to consider the possible subgraphs
(single edges, triangles, five-stars, etc). Each possible sub-
graph occurs either never, or infinitely often.

Since an infinite graph may have infinitely many edges
even if it is sparsely connected, the number of edges is best
quantified in terms of a rate:

DEFINITION 7.1. Let ¢ = (v,e) be an infinite graph
with vertex set N and let g, = (v, €5,) be the subgraph on
{1,...,n}. We say that g is sparse if, as n increases, |e,|
is of size 2(n) (is upper-bounded by c-n for some constant
c). It is called dense if |e,,| = O(n?) (lower-bounded by
c¢-n? for some constant c). N

Many important types of graph and array data are in-
herently sparse: In a social network with billions of users,
individual users do not, on average, have billions of friends.

Fact 7.2. Exchangeable graphs are not sparse. If a
random graph is exchangeable, it is either dense or empty.
N
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The argument is simple: Let G;, be an n-vertex random
undirected graph sampled according to Eq. (3.4). The ex-
pected proportion of edges in present in G,, out of all
(Z) = @ possible edges, is independent of n and given
by € := %f[o,l]z W (z,y)dzdy. (The factor 3 occurs since
W is symmetric.) If € =0, it follows that G,, is empty
with probability one and therefore trivially sparse. On the
other hand, if € > 0, we have ¢ - () = ©(n?) edges in ex-
pectation and so, by the law of large numbers, G,, is dense
with probability one.

REMARK 7.3 (Graph limits are dense). The theory of
graph limits described in Section 5 is intimately related to
exchangeability, and is inherently a theory of dense graphs:
If we construct a sequence of graphs with sparsely growing
edge sets, convergence in cut metric is still well-defined,
but the limit object is always the empty graphon, i.e., a
function on [0, 1] which vanishes almost everywhere. <

The theory of dense graphs, as described in this article,
is well-developed; the theory of sparse graphs, in contrast,
is not, and the practical importance of such graphs there-
fore raises crucial questions for further research.

7.2. Beyond exchangeability: Symmetry and ergodic
theory. Exchangeability is a specific form of probabilis-
tic symmetry: Mathematically, symmetries are expressed
as invariance under a group. Exchangeability is the special
case where this group is either the infinite symmetric group
(as in de Finetti’s theorem), or a under a suitable subgroup
(as in the Aldous-Hoover theorem). A very general math-
ematical result, the ergodic decomposition theorem, shows
that integral decompositions of the form (2.1) are a general
consequence of symmetry properties, rather than specifi-
cally of exchangeability. The general theme is that there
is some correspondence of the form

invariance property <— integral decomposition .

In principal, Bayesian models can be constructed based on
any type of symmetry, as long as this symmetry defines a
useful set of ergodic distributions.

The following statement of the ergodic decomposition
theorem glosses over various technical details; for a precise
statement, see e.g., [37, Theorem A1.4].

THEOREM 7.4 (Varadarajan [64]). If the distribution
of a random structure X s tnvariant under a nice group
G (= has a symmetry property), it has a representation of
the form

p(.,0)v(0). (7.1)

P(X» € .):/

T

The group G defines a set € of ergodic distributions on
Xoo, and p( ., 0) is a distribution in & for each § € T. O

Following the discussion in Section 2, the components of
the theorem will look familiar. In Bayesian terms, p(.,#)
again corresponds to the observation distribution and v

Fig 9: If £ is finite, the de Finetti mixture representation Eq. (2.5)
and the more general representation Eq. (7.1) reduce to a finite con-
vex combination. The points inside the set—i.e., the distributions
P with the symmetry property defined by the group G—can be rep-
resented as convex combinations P = Ee,;es vieq, with coefficients
v; > 0 satisfying 3~ v; = 1. When £ is infinite, an integral is substi-
tuted for the sum.

to the prior. Geometrically, integral representations like
Eq. (7.1) can be regarded as convex combinations (as il-
lustrated in Fig. 9 for a toy example with three ergodic
measures).

A special case of this result is well-known in Bayesian
theory as a result of David Freedman [25, 26].

EXAMPLE 7.5 (Freedman’s theorem). Consider a se-
quence X1, Xo,... as in de Finetti’s theorem. Now re-
place invariance under permutations by a stronger condi-
tion: Let O(n) be the group of rotations and reflections
on R", i.e., the set of n x n orthogonal matrices. We now
demand that, if we regard any initial sequence of n vari-
ables as a random vector in R™, then rotating this vector
does not change the distribution of the sequence: For any
n € N and any M € O(n),

(X1, X2,...) = (M(Xy,...

y Xn), Xnt1, Xnga ... ). (7.2)

In the language of Theorem 7.4, the group G is the set of
all rotations of any length, G = U,cnO(n). If X satisfies
Eq. (7.2), its distribution is a scale mixture of Gaussians:

( ﬁ Jva,(Xn))du]R+ (0)

n=1

P(X™ € .) = / (7.3)

Ry

Thus, £ contains all factorial distributions of zero-mean
normal distributions on R, T is the set R~ of variances,
and v a distribution on Rsg. <

Compared to de Finetti’s theorem, the of the group G
has been increased: Any permutation can be represented
as an orthogonal matrix, but here rotations have been
added as well. In other words, we are strenghtening the
hypothesis by imposing more constraints on the distribu-
tion of X>°. As a result, the set £ of ergodic measures
shrinks from all factorial measures to the set of factorials
of zero-mean Gaussians. This is again an example of a
general theme:

larger group +— more specific representation



In contrast, the Aldous-Hoover theorem weakens the hy-
pothesis of de Finetti’s theorem—in the matrix case, for
instance, the set of all permutations of the index set N? is
restricted to those which preserve rows and columns—and
hence yields a more general representation.

REMARK 7.6 (Symmetry and sufficiency). An alter-
native way to define symmetry in statistical models is
through sufficient statistics: Intuitively, a symmetry prop-
erty identifies information which is not relevant to the
statistical problem; so does a sufficient statistic. For ex-
ample, the empirical distribution retains all information
about a sample except for the order in which observations
are recorded. A model for random sequences is hence ex-
changeable if and only if the empirical distribution is a
sufficient statistic. In an exchangeable graph model, the
empirical graphon (the checkerboard function in Fig. 8)
is a sufficient statistic. If the sufficient statistic is finite-
dimensional and computes an average % > So(z;) over ob-
servations for some function Sy, the ergodic distributions
are exponential family models [41]. A readable introduc-
tion to this topic is given by Diaconis [20]. The definitive
reference is the monograph of Lauritzen [42], who refers to
the set & of ergodic distributions as an extremal family. <

The ergodic decomposition theorem does not, unfortu-
nately, solve all foundational problems of Bayesian infer-
ence. To be useful to statistics, a symmetry principle must
satisfy two conditions:

1. The set £ of ergodic measures should be a “small”
subset of the set of symmetric measures.

2. The measures p(.,0) should have a tractable repre-
sentation, such as Kingman’s paint-box or the Aldous-
Hoover sampling scheme.

Theorem 7.4 guarantees neither. If (1) is not satisfied, the
representation is useless for statistical purposes: The inte-
gral representation Eq. (7.1) means that the information in
X is split into two parts, the information contained in the
parameter value 6 (which a statistical procedure tries to ex-
tract) and the randomness represented by p(.,6) (which
the statistical procedure discards). If the set £ is too large,
© contains almost all the information in X, and the de-
composition becomes meaningless. We will encounter an
appealing notion of symmetry for sparse networks in the
next section—which, however, seems to satisfy neither con-
dition (1) or (2). It is not clear at present whether there
are useful types of symmetries based on groups which are
not isomorphic to a group of permutations. In light of the
apparent contradiction between sparseness and exchange-
ability, this question, despite its abstraction, seems to be
of some importance to the Bayesian paradigm.

7.3. Stationary networks and involution invariance. A
class of sparse random structures of particular interest are
networks. There is a large and rapidly growing literature
on this subject in applied probability, which defines and
studies specific graph distributions and their probabilistic
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properties; [23] is a good survey. Similarly, a huge litera-
ture available on applications [e.g. 50]. Lacking at present
are both a proper statistical understanding of such mod-
els, and a mathematical theory similarly coherent as that
provided by graph limits for dense graphs. This final sec-
tion describes some concepts at the intersection of network
problems and exchangeable random structures.

One possible way to generate sparse graphs is of course
to modify the sampling scheme for exchangeable graphs to
generate fewer edges.

EXAMPLE 7.7 (The BJR model). There is a very sim-
ple way to translate the Aldous-Hoover approach into a
sparse graph: Suppose we sample rows and columns of the
matrix consecutively. At the nth step, we sample X,,; for
all 7 < n. Now we multiply the probability in our usual
sampling scheme by 1/n:

Xnj ~ Bernoulli(%w(Un, Uj)> . (7.4)
Comparison with our argument why exchangeable graphs
are dense immediately shows that a graph sampled this
way is sparse. This class of random graphs was introduced
by Bollobds, Janson, and Riordan [13]. The BJR model
contains various interesting models as special cases; for in-
stance, setting w(z,y) := \/%y yields the mean-field version
of the well-known Barabdsi-Albert model (though not the
Barabési-Albert model itself) [12]. A moment estimator
for the edge density under this model is studied by Bickel,
Chen, and Levina [11]. <

An obvious limitation of the BJR model is that it does
not actually attempt to model network structure; rather,
it modifies a model of exchangeable structure to fit a first-
order statistic (the number of edges) of the network.

A crucial difference between network structures and ex-
changeable graphs is that, in most networks, location in
the graph matters. If conditioning on location is informa-
tive, exchangeability is broken. Probabilistically, location
is modeled by marking a distinguished vertex in the graph.
A rooted graph (g,v) is simply a graph ¢ in which a par-
ticular vertex v has been marked as the root. A very nat-
ural notion of invariance for networks modeled by rooted
graphs is the following:

DEFINITION 7.8. Let P be the distribution of a ran-
dom rooted graph, and define a distribution P as follows:
A sample (G, w) ~ P is generated by sampling (G,v) ~ P,
and then sampling w uniformly from the neighbors of v in
G. The distribution P is called involution invariant if
P=P. <

The definition says that, if an observer randomly walks
along the graph G by mfoving to a uniformly selected
neighbor in each step, the distribution of the network
around the observer remains unchanged (although the ac-
tual neighborhoods in a sampled graph may vary). This
is can be thought of as a network analogue of a stationary
stochastic process.
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An equivalent (though more technical) definition of in-
troduces a shift mapping, which shifts the root v to a
neighbor w [2]. Involution invariance then means that P is
invariant under such shifts, just as exchangeable distribu-
tion are invariant under permutations. In particular, it is
a symmetry property, and involution invariant graphs ad-
mit an ergodic decomposition. Aldous and Lyons [1] have
characterized the ergodic measures.

This characterization is abstract, however, and there is
no known “nice” representation resembling, for example,
the sampling scheme for exchangeable graphs. Thus, of
the two desiderata described in Section 7.2, property (2)
does not seem to hold. We believe that property (1) does
not hold either: Although we have no proof at present,
we conjecture that every involution invariant distribution
can be closely approximated by an ergodic measure (i.e.,
the set of ergodic distributions is a “large” subset of the
involution invariant distributions). Involution invariance
is the only reasonably well-studied notion of invariance for
sparse graphs, but despite its intuitive appeal, it seems to
constitute and example of a symmetry that is too weak to
yield useful statistical models.

8. Further References. Excellent non-technical ref-
erences on the general theory of exchangeable arrays and
other exchangeable random structures are two recent sur-
veys by Aldous [5, 6]. His well-known lecture notes [4] also
cover exchangeable arrays. The most comprehensive avail-
able reference on the general theory is the monograph by
Kallenberg [37] (which presupposes in-depth knowledge of
measure-theoretic probability). Kingman’s original article
[39] provides a concise reference on exchangeable random
partitions. A thorough, more technical treatment of ex-
changeable partitions can be found in [10].

Schervish [58] gives an insightful discussion of the ap-
plication of exchangeability to Bayesian statistics. There
is a close connection between symmetry principles (such
as exchangeability) and sufficient statistics, which is cov-
ered by a substantial literature. See Diaconis [20] for an
introduction and further references. For applications of ex-
changeability results to machine learning models, see [24],
who discuss applications of the partial exchangeability re-
sult of Diaconis and Freedman [21] to the infinite hidden
Markov model [9].

The theory of graph limits in its current form was initi-
ated by Lovész and Szegedy [46, 47] and Borgs et al. [14]. It
builds on work of Frieze and Kannan [27], who introduced
both the weak regularity lemma (Theorem 5.4) and the
cut norm dg. In the framework of this theory, the Aldous-
Hoover representation of exchangeable graphs can be de-
rived by purely analytic means [46, Theorem 2.7]. The
connection between graph limits and Aldous-Hoover the-
ory was established, independently of each other, by Diaco-
nis and Janson [22] and by Austin [7]. A lucid introduction
to the analytic perspective is the survey Lovéasz [44], which
assumes basic familiarity with measure-theoretic probabil-

ity and functional analysis, but is largely non-technical.
Historically, the Aldous-Hoover representation was es-
tablished in independent works of David Aldous and Dou-

glas N. Hoover in the late 1970s. Aldous proof used
probability-theoretic methods, whereas Hoover, a logician,
leveraged techniques from model theory. In 1979, Kingman
[40] writes

...a general solution has now been supplied by Dr David
Aldous of Cambridge. [...] The proof is at present very
complicated, but there is reason to hope that the tech-
niques developed can be applied to more general exper-
imental designs.

Aldous’ paper [3], published in 1981, attributes the idea
of the published version of the proof to Kingman. The re-
sults were later generalized considerably by Olav Kallen-
berg [35].
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