
AClass: An online algorithm for generative classification

Vikash K. Mansinghka
MIT BCS∗ and CSAIL†

vkm@mit.edu

Daniel M. Roy
MIT CSAIL†

droy@mit.edu

Ryan Rifkin
Honda Research USA‡

rrifkin@honda-ri.com

Josh Tenenbaum
MIT BCS∗ and CSAIL†

jbt@mit.edu

Abstract

We present AClass, a simple, online, par-
allelizable algorithm for supervised multi-
class classification. AClass models each class-
conditional density as a Chinese restaurant
process mixture, and performs approximate
inference in this model using a sequential
Monte Carlo scheme. AClass combines sev-
eral strengths of previous approaches to clas-
sification that are not typically found in a
single algorithm; it supports learning from
missing data and yields sensibly regularized
nonlinear decision boundaries while remain-
ing computationally efficient. We compare
AClass to several standard classification al-
gorithms and show competitive performance.

1 Introduction

Classification is a foundational problem in machine
learning, and classic approaches are full of apparent
tradeoffs. For example, the ability to handle missing
or unlabeled data via simple inductive biases is consid-
ered the strong point of generative approaches while
discriminative methods often exploit flexible, nonlin-
ear decision boundaries that generalize well while re-
maining computationally tractable. In this paper, we
present the AClass algorithm, a simple but novel ap-
proach that combines several strengths of previous
classifiers that have not typically been available to-
gether in a single algorithm. We also perform prelimi-
nary experiments in synthetic and benchmark settings,
showing competitive performance.

∗ Brain and Cognitive Science Dept, 43 Vassar St.,
Cambridge, MA 02139

† Computer Science and Artificial Intelligence Lab, 32
Vassar St., Cambridge, MA 02139

‡ Honda Research Institute USA, Inc., 145 Tremont
St., Boston, MA 02111

AClass is an online, parallelizable algorithm for mul-
ticlass classification based on approximate, sequential
Monte Carlo based inference in a probabilistic gener-
ative model. AClass operates by learning a model of
the class-conditional densities of the data by assuming
they are Chinese restaurant process (CRP) mixtures.
Chinese restaurant process mixture models are a stan-
dard tool from the nonparametric Bayesian statistics
literature, and enable the number of mixture compo-
nents to be discovered dynamically during posterior in-
ference. Intuitively, each component can be thought of
as a mode or prototype associated with its class. The
full generative model embeds these class-conditional
mixtures in an outer mixture over class labels. As
this space permits many modes per class, we can ob-
tain nonlinear decision boundaries, without sacrific-
ing the appealing tractability of popular discrimina-
tive approaches. The model can handle both missing
labels and missing features, although the approximate
inference methods we present requires all labels during
training to be observed. The training and testing pro-
cedures derived from our Monte Carlo approximation
constitute the AClass algorithm.

Our work builds on the approach of Nigam (2001),
which used conventional finite mixture models (trained
with EM) to represent class-conditional densities.
AClass addresses some of the basic inductive and algo-
rithmic limitations of that approach. First, by ground-
ing our algorithm in posterior inference in a bank of
CRP mixtures, model complexity is automatically ad-
justed in a probabilistically coherent, self-consistent
way as new datapoints arrive. Second, by approximat-
ing posterior inference using sequential Monte Carlo
methods (Doucet et al., 2001), we can efficiently and
accurately train and test online, without bounding
the model complexities we consider. In particular, as
new data are encountered, our online inference scheme
avoids the computationally expensive re-training (and
re-crossvalidation) associated with finite mixture ap-
proaches.

1.1 Related Work

The model underlying AClass is a nonparametric
extension of the mixture-of-finite-mixtures approach
to supervised and semisupervised classification (see
Nigam (2001) for applications to text data and Hal-
berstadt and Glass (1998) for applications to speech
recognition). Instead of finite mixture models for each
class-conditional density, we use CRP mixture models
with conjugate priors (Rasmussen, 2000), which are
typically fit to data using Markov chain Monte Carlo
(MCMC) methods (Neal, 2000). However, instead of
computationally expensive, batch MCMC, we perform
inference via the conditional-posterior particle filter for
conjugate CRP mixtures (see e.g. (Fearnhead, 2004)
and (Sanborn et al., 2006)).

The Forgetron (Dekel et al., 2006) is one recently de-
veloped discriminative approach that provides sim-
ilar functionality to AClass. The Forgetron is a
bounded-memory, online, kernelized, binary classifica-
tion scheme with attractive theoretical properties, but
it cannot naturally handle missing data. Widely used
discriminative algorithms like regularized least squares
(RLS) and logistic regression also provide reasonable
performance benchmarks (Rifkin and Lippert, 2006),
although they lack some of the desirable features of
our approach, especially online training and testing.

In principle, an efficient implementation of AClass
should be applicable to large scale classification prob-
lems with mixed discrete and continuous features, such
as classifying web pages, large image databases or as-
tronomical data. In this paper, we focus on exploring
the properties of the basic model algorithm in simple
cases.

y ∈ Y

zi

yi

!θ γ

i ∈ {1, . . . , N}

β α

πy

y ∈ Y

!xi

k ∈ {1, 2, . . . }

!φ(k)
y

Figure 1: Graphical model for the joint probability dis-
tribution over latent parameters, labels and feature vectors
in which AClass operates. The training and testing pro-
cedures comprising the AClass algorithm are derived from
sequential Monte Carlo inference in this model.

2 Model and Inference

We describe our model in terms of a generative process
for data sets, comprised of class labels, y ∈ Y , and
feature vectors, ~x.

1. Let ~φ
(k)
y be the vector of parameters for the kth

mixture component in the class-conditional den-
sity for class y. For y ∈ Y , k ∈ {1, 2, . . . }, sample
~φ

(k)
y from an appropriate conjugate prior (with

hyperparameter β).

2. Sample mixing weights over class labels, ~θ = {θy},
from a Dirichlet prior with hyperparameter γ.

3. For each datapoint i ∈ {1, . . . , N},

(a) Sample the class label, yi, from a multinomial
distribution with parameters ~θ.

(b) Sample the group (mixture component)
membership for this datapoint, zi, according
to the CRP for class yi. Formally, if ng

y is the
number of datapoints with label y assigned to
group g, and ny =

∑
g ng

y is the total number
of datapoints observed with label y so far,
we choose each existing group with probabil-
ity ng

y

ny+α and a new group (i.e. create a new
mixture component in this class-conditional
density) with probability α

ny+α .

(c) Sample the feature vector ~xi from the appro-
priate conjugate likelihood with parameters
~φ

(zi)
yi .

In this paper, we focus on binary features, modeled
via the conjugate Beta-Bernoulli model. Continu-
ous features (either independent or correlated, via
the Normal-Inverse-Chisquared and Normal-Inverse-
Wishart models, respectively) are a straightforward
modification.

In essence, the per-class Chinese restaurant process
induces a prior on partitions of our training data,
ranging from the case where all datapoints are in one
group (recovering a naive Bayes classifier or single-
mode model for the class conditional density) to the
case where each datapoint has its own mode (recover-
ing a kernel density estimate, with the kernel derived
from the posterior predictive distribution of the con-
jugate model for mixture components).

Our model has few free parameters. We set α to the
standard value of 1.0, and leave the Beta hyperparam-
eters at reference values of 0.5 throughout.

α

β

z1
ZNy

SNy−1

Zi

Si−1

Z2

S1
. . .

.

. . .

x1 x2 xi xNy

Figure 2: Dynamic model obtained by arbitrarily order-
ing the datapoints within each class and integrating out
class-conditional component parameters. Zi is the group
(mixture component) membership vector for datapoints
1...i. Si−1 is the collection of sufficient statistics for all
groups present before datapoint i is processed. Note that
the dimensionality of the latent variables Z and S grows
as the chain unrolls over datapoints. The AClass inference
algorithm can be interpreted as a bank of particle filters
for this dynamic Bayesian network, one for each class.

2.1 Inference

The structure of our sequential Monte Carlo algorithm
for inference closely follows our generative process; this
conceptual simplicity is an attractive feature of our
approach. In the case of fully supervised data, the as-
serted class labels separate the parameters of the CRP
mixture models for each class, so inference reduces to
separate problems for each class-conditional CRP. To
solve these decoupled problems, we employ a particle
filtering approach based on Fearnhead (2004).

The intuition behind a CRP mixture particle filter is
that each particle represents a hypothesis about the
assignment of the past data points to groups. When a
new datapoint is processed by a particle, it is stochas-
tically assigned to a group based on how well it fits
with the data previously assigned to that group (via
its probability under the group’s posterior predictive
distribution). Old datapoints are not reassigned; in-
stead, the resampling step for the particle filter dis-
courages the propagation of particles which seem to
be relatively poor explanations of the data.

To better understand the structure of our inference ap-
proach, it is illustrative to view the dynamical graph-
ical model shown in Figure 2. This model can be
obtained from our original model by focusing on one
class, arbitrarily ordering the datapoints for that class,
and integrating out the class-conditional mixture com-
ponent parameters ~φ (retaining only their associated
per-mixture-component sufficient statistics). Our se-
quential Monte Carlo algorithm can be directly inter-

preted as a bank of independent filters for this model,
one for each class.

The essence of the transformation from the original
model to a dynamic one (where approximate filtering
yields approximate posterior inference) is the collec-
tion of the z variables, or group memberships, for all
datapoints up to i into a single group membership vec-
tor Zi. This transformation directly exploits the self-
consistency of the CRP prior on partitions for varying
numbers of datapoints to yield well-defined unrollings
for an arbitrary number of datapoints. However, since
we are using the CRP as a prior on partitions (or com-
ponent assignment vectors) in a mixture model, we
must also similarly transform the sufficient statistics;
accordingly, we also track the sufficient statistics for
all groups (mixture components) when datapoint i is
processed in Si−1. Thus the latent state of this dy-
namic model tracks a density estimate for the data-
points in terms of a partition of datapoints into mix-
ture components and the parameters associated with
the components. Accordingly, S0 is empty (there are
no pre-existing sufficient statistics when processing the
first datapoint), and Z1 = z1 = [0], since the first dat-
apoint must be in its own group.

To sample from the “motion model” on latent vari-
ables, P (Zi, Si−1|xi−1, Zi−1, Si−2), first copy Zi−1 into
Zi, then incorporate xi−1 into the appropriate part
of S (based on its group assignment zi−1), then sam-
ple a component assignment for datapoint i from the
CRP prior. The “observation model” measures com-
patibility of xi with the running density estimate; so,
P (xi|Zi, Si−1) is just the posterior predictive distribu-
tion of the group to which i was assigned (obtained by
looking up the entry of Si−1 for the group zi).

Particle filtering yields running Monte Carlo estimates
of the latent variable in this chain; after processing
all datapoints up to i, then, we have samples from
P (z1...i, s1...(i−1)|x1, · · · , xi), namely the posterior dis-
tribution of interest. AClass is simply a conditional-
posterior particle filter for this chain structured model.
Since the particle filter can be asked for posterior es-
timates at any point in time, our algorithm is on-
line. Since the only interactions between particles take
place during aggregation steps such as resampling and
testing, our algorithm is massively parallelizable with
relatively inexpensive communication costs, and is, in
principle, suitable for large scale classification tasks.

In the pseudocode shown in Figure 2.1, we use ~x
to denote the F features of an observation (possi-
bly with missing values), y ∈ Y for class labels, α
for the CRP hyperparameter, γ for the hyperparam-
eter on the multinomial distribution over class la-
bels, A.m[l] to denote the counts for class l, and

p.n[g] to denote the counts for group g (part of
a CRP partition) in particle p. We have N to-
tal datapoints. All values are assumed to be ini-
tialized to zero unless otherwise specified. Further-
more, we assume some basic utility procedures, such
as Sample-Discrete, which returns a pseudoran-
dom sample from a vector of probabilities); Average,
which returns a weighted average of its inputs; and
Resample-Particles(F , ~w), which resamples the
particles in filter F according to the weights in ~w
via the standard resampling algorithm from Sampling-
Importance-Resampling1 (Doucet et al., 2001). This
step focuses effort of the sampler on particles that
score well locally (i.e. explain the last datapoint
well). In practice, all functions manipulating probabil-
ities/weights should be implemented in the log domain
to avoid underflow. Note that all vectors are assumed
to be initialized to zeros and growable dynamically.

Because we assume conjugate priors on the parame-
ters of the mixture components in each CRP-based
class-conditional density estimator, we can integrate
out these parameters analytically and only represent
the sufficient statistics associated with previous data-
points assigned to a given group. Update-SuffStats
and Posterior-Predictive are standard probability
computations in terms of these statistics; missing fea-
tures are handled simply by ignoring them in these
functions. For example, with binary data, the suf-
ficient statistics for each feature are simply counts of
observed heads, hp

g, and observed tails, tpg, one for each
group in each particle. Then Update-SuffStats in-
crements those counts, and Posterior-Predictive

computes P (~x) =
∏F

f=1
β+hxf

t1−xf

2β+h+t . See e.g. Gelman
et al. (2003) for details for other conjugate models.

The memory requirements are worst-case linear, when
every datapoint is assigned to its own group in its
appropriate class-conditional density. However, this
case is exceedingly unlikely in practice - in expecta-
tion, the Chinese restaurant process generates log α
groups, and generating as many groups as datapoints
would be a signal that no generalization from one data-
point to another is licensed. In practice, we conjecture
bounds of a few hundred groups should be adequate
for very large scale real-world discrete feature classifi-
cation tasks, based on (Nigam, 2001).

We can characterize the complexity per iteration of the
algorithm in terms of pi (the number of particles per
CRP density estimator), G (the maximum number of
groups found in a class-conditional CRP) and the other
variables defined above. In particular, Train-CRP

1Throughout, we resample when the number of effec-
tive particles, measured as 1/(

P
~w2

i), reaches half of the
original number of particles in the filter

AClass-Train(A:aclass, y:class-label, x:observation)

1 Train-CRP(A.F [y], x)

AClass-Test(A:aclass, x:observation)

1 foreach label y in Y

2 prob[y]+=
A.m[y]+γ

Sum(A.m)+|Y |·γ
·Predictive-Density(A.F [y], x)

3 prob ← Normalize(prob)

Train-CRP(F:filter, x:observation)

1 foreach particle p in F
2 foreach group g in 1, 2, . . . , p.numGroups

3 prob[g]← p.n[g]
Sum(p.n)+α

· Posterior-Predictive(p. stats[g], x)

4 prob[g + 1]← α
Sum(p.n)+α

· Posterior-Predictive(p. stats[g + 1], x)

5 F.w[p]← Sum(prob)
6 g′ ← Sample-Discrete(prob)
7 p.n[g′]← p.n[g′] + 1
8 Update-Sufficient-Statistics(p, g′, x)
9 Resample-Particles(F, w)

Predictive-Density(F:filter, x:observation)

1 foreach particle p in F
2 foreach group g in 1, 2, . . . , p.numGroups

3 prob[p][g]← p.n[g]
Sum(p.n)+α

· Posterior-Predictive(p. stats[g], x)

4 prob[p][g + 1]← α
Sum(p.n)+α

· Posterior-Predictive(p. stats[g + 1], x)

5 prob[p]← Sumg(prob[p][g])
6 return Average(F.w[p], prob[p])

Figure 3: Pseudocode for the AClass algorithm. Suitable
for use with generic conjugate models for mixture com-
ponents. Depends on standard statistical procedures for
sampling, averaging and predictive density evaluation.

and Predictive-Density both take O(piGD) time.
This subroutine must be called O(N) times. Over-
all, then, we get an algorithm whose runtime can be
expected to be linear in N (although the extremely
unlikely worst-case complexity is quadratic).

3 Experiments

We performed several preliminary experiments to ad-
dress the basic performance of our algorithm in syn-
thetic and real-world settings. Throughout, the dis-
criminative benchmarks we compared against were lin-
ear logistic regression and nonlinear regularized least
squares with a polynomial kernel of degree 2. For the
regularized least squares algorithm, we used a one-vs-
all scheme and optimized the regularization parame-
ter λ for each classifier individually via efficient leave-
one-out cross-validation methods (Rifkin and Lippert,
2006). For logistic regression, we set λ = 10−2 in
all trials. To handle missing data with discriminative
methods, we used online mean imputation - that is, we
filled in each missing feature value with the running
average of the observed values seen before it, starting
with 0.5. It is worth noting that this mean imputation
strategy can be interpreted as fitting a single mixture
component to each class, with independent feature val-
ues, and imputing with the mean of the posterior pre-
dictive distribution on features.

5 10 20 30

training size: 1000

1 5 10 20 30

5

10

15

20

25

30
training size: 50

re
c
o
v
e
re

d
g
ro

u
p
s

40 particles
10 particles
1 particle

5 10 20 30

training size: 200

actual groups

Figure 4: Accuracy of sequential Monte Carlo for Chinese
restaurant process mixture models on synthetic data. Each
plot shows the number of recovered groups (mixture com-
ponents) versus the number of groups in the true model
from which synthetic data was sampled. Each plot shows
accuracy for a different number of training points. Each
line shows results for inference with a different number of
particles. All results are averages over 10 training sets.

Our core approach to classification is grounded in
class-conditional density estimation. Accordingly, we
first report the performance of our density estima-
tor (the Train-CRP and Predictive-Density sub-
routines) on synthetic data. We generated synthetic
data from mixture models over 50-dimensional binary
feature vectors with varying numbers of components
(from 1 to 30), to test our particle filter inference ap-
proximation (and model robustness to the setting of α,
which was fixed to 1 throughout). The mixing weights
(over the components) were fixed to be uniform, yield-
ing groupings a priori disfavored under the Chinese
restaurant process and therefore a conservative test of
particle filter accuracy. For each component in each
mixture, we generated parameters for each binary fea-
ture (corresponding to a single coin weight) from a
Beta(0.5, 0.5) distribution, yielding moderately noisy
clusters. We then measured accuracy at component
discovery and density estimation under our model.

Figure 4 summarizes our results with respect to dis-
covery of the right complexity mixture. We found that
the particle filter approximation discovered complexi-
ties accurately, though for very small training sizes, we
underestimate the number of groups if the true number
is large enough that some may not have been observed
in the training sample.

We also computed a Monte Carlo estimate of the KL
divergence between the density learned by our particle
filters and the true mixture density. For comparison,
we show the KL divergence between truth and a one-
mode model (which, if used for class-conditional den-
sity estimation and classification, would yield a naive
Bayesian classifier). When the true density has multi-
ple modes, the naive Bayesian model performs sub-
stantially worse than a CRP mixture, though they
agree when the true distribution is unimodal. Oth-
erwise, we find all particle filters yield accurate den-
sity estimators with small numbers of samples, though
the 40 particle version is roughly twice as accurate as

50 200 500 750 1000

1
2

4

6

8

10

12

14

training set size

10 groups

50 200 500 750 1000
0

0.2

0.4

0.6

k
l
d
is

ta
n
c
e

1 group

40 particles
10 particles
1 particle
Naive Bayes

200 500 750 1000

30 groups

Figure 5: Effectiveness of sequential Monte Carlo infer-
ence in Chinese restaurant process mixture models at pro-
ducing accurate density estimators. Each plot shows a
Monte Carlo estimate of the KL divergence between the
learned density model and ground truth versus the num-
ber of training data points. Each plot shows accuracy for
a different number of groups (mixture components) in the
true density. Each line shows results for inference with a
different number of particles (and a one-component model,
equivalent to the density estimation done as part of a naive
Bayes classifier, as a baseline). All results are averages over
10 training/testing sets. Note the scale difference in the 1
group case.

the 1-particle version when the true density has many
groups. This is unsurprising, as the 1-particle filter
will be sensitive to random errors in the assignment
of early datapoints, while similarly erroneous particles
die in resampling in the 40-particle filter.

Our second experiment explored the issue of whether
these density estimators can be used as the basis of
competitive generative classifiers. We investigated sev-
eral synthetic classification problems, and report here
the results on one of them: a four-class problem, where
the class-conditional density for each class was a mix-
ture model (as in experiment 1, with uniform mixing
weights and Beta(0.5, 0.5) priors on the Bernoulli pa-
rameter for each dimension). The mixtures for the four
classes had 4, 10, 5 and 20 modes respectively, repre-
senting a wide range of complexities requiring cross-
validation over a broad range under traditional ap-
proaches. We report average 0-1 loss on a held-out
test set of 500 datapoints for a range of training set
sizes, as well as performance in a missing data setting,
where varying fractions of feature values were missing
at random during training and testing. At all three
levels of missing data, AClass outperformed the other
algorithms. Naive Bayes was the least effective. With
no missing data, the 1-particle AClass performs essen-
tially as well as AClass, since classification is easier
than density estimation (at least under 0-1 loss, so
predictive uncertainties are unimportant). However,
with 50% data missing, the 1-particle AClass suffers
slightly, as small errors in class-conditional density es-
timation have a greater impact on test accuracy.

Our third experiment assessed the performance of our
approach on a standard classification task based on
a subset of the 20 Newsgroups data set collected by

100 200 500 750 1000
0.4

0.5

0.6

0.7

0.8

0.9

1

training size

p
re

d
ic

ti
o
n

a
cc

u
ra

cy

No Missing Data

100 200 500 750 1000
0.4

0.5

0.6

0.7

0.8

0.9

1

training size

25% Missing

100 200 500 750 1000
0.4

0.5

0.6

0.7

0.8

0.9

1

training size

50% Missing

AClass (40 particles)
AClass (1 particle)
Logistic Regression (CG)
Poly RLS, Degree=2
Naive Bayesian Classifier

Figure 6: Classification performance (via average 0-1 loss) versus training set size on a 100 feature synthetic benchmark
with 4 classes. The class-conditional densities had 4 modes, 5 modes, 10 modes and 20 modes respectively. Each plot
shows performance when a different fraction of feature values are missing during training and testing. Each line shows
classification performance for a different classification algorithm. All results are averages over 10 training/test sets.

100 200 500 750 1000

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

training size

p
r
e
d
ic

ti
o
n

a
c
c
u
r
a
c
y

100 200 500 750 1000

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

training size
100 200 500 750 1000

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

training size

Figure 7: Classification performance, as above, on a 4-class problem on a 20-Newsgroup dataset with 100 binary features.
Note the effectiveness of the naive Bayes classifier on this task, and the recovery of that performance by AClass, due to
sensible regularization.

100 200 300 500 750 1000

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

training size

p
r
e
d
ic

ti
o
n

a
c
c
u
r
a
c
y

100 200 300 500 750 1000

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

training size
100 200 300 500 750 1000

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

training size

Figure 8: Classification performance, as in Figure 6, on a 2-class, odd versus even MNIST digit classification task.
Feature vectors were obtained by binarizing coefficients with respect to the first 50 principal components of MNIST. Note
AClass’ competitive performance with polynomial regularized last squares when 0% and 25% of feature values are missing,
and the crossover to naive Bayes’ lower performance when 50% of feature values are missing.

Roweis (2006). This dataset consists of text docu-
ments belonging to one of four broad categories (the
comp.*, rec.*, sci.*, and talk.* usenet hierar-
chies). For each document, there are 100 binary fea-
tures indicating the presence or absence of each of
100 common non-stop words. Figure 7 summarizes
these results. As above, we report average 0-1 loss on
a held-out test set of 500 for all algorithms. Quali-
tative properties of the performance comparison are
consistent with the synthetic tests above, with perfor-
mance degrading gracefully (and remaining above the
discriminative approaches) as features are made miss-
ing at random. It is worth noting that in this data set,
AClass appears to be finding a single mode per class,
likely due to the inherent feature sparsity and lack of
hyperparameter inference, recovering the performance
of naive Bayes.

For our fourth experiment, we assess performance on
a binarized variant of MNIST, collapsed into an odd-
vs-even digits classification task. Following standard
preprocessing procedures, we first extracted the top 50
principal components from 5000 randomly chosen ex-
amples, each originally 784-dimensional vectors with
discrete values in the range [0,255]. We then bina-
rized the components (by taking their sign); this bi-
nary data was the input to all algorithms. Our results
are in Figure 8. When all data is observed, AClass
performs competitively with polynomial RLS and sig-
nificantly outperforms naive Bayes and logistic regres-
sion, suggesting the helpfulness of a properly regular-
ized nonlinear decision boundary. However, once half
the feature values are missing, AClass and naive Bayes
perform almost identically, likely because AClass no
longer has sufficient evidence to sustain multimodal
class conditional densities. Without preprocessing via
PCA, on fully observed data, AClass performs as naive
Bayes, and is beaten by polynomial RLS.

4 Discussion

Our model and inference algorithm are both conceptu-
ally attractive, as they each address a significant limi-
tation of previous work – namely, principled choice of
the complexity of the class-conditional density estima-
tors and support for tractable, online inference. It is
the combination that enables us to construct AClass,
an algorithm that yields good computational and gen-
erative performance while still being grounded in a
simple procedure and intuitive inductive bias.

This model/algorithm pair is also interesting from the
standpoint of the broader generative/discriminative
debate in prediction. By ‘generative model’, we mean
a model for datapoints and labels which includes a
model for the class-conditional densities, where predic-

tion (at test time) is done by Bayes’ rule. By ‘discrim-
inative model’, we mean a model for only the proba-
bility of a label given a datapoint2.

Typically, discriminative models admit a larger space
of possible decision boundaries than generative ones,
and are often nonparametric (e.g. SVMs, RLS).
Therefore discriminative models often perform better
asymptotically, but can overfit on very small data sets.
Generative models, on the other hand, can perform
poorly in the large data limit if they don’t allow ar-
bitrarily complex class-conditional densities via non-
parametric density estimators; this is the case with e.g.
finite mixture models and certainly with naive Bayes.
Furthermore, if the inference approximations used to
train a generative model don’t accurately incorporate
Bayesian model averaging, as is the case with standard
approaches like EM-trained finite mixture models, pre-
diction performance may be quite poor for very small
data sets due to overfitting. This leaves little room for
generative methods to perform well, supporting the
conventional wisdom that discriminative approaches
are more appropriate for classification problems.

This conventional wisdom can be refined based on our
algorithm and experiments. Generative methods such
as AClass can in fact exploit the power of nonparamet-
rics via appropriate class-conditional modeling, as well
as perform competitively on a range of data set sizes
via tractable approximate inference. However, they
can still suffer relative to discriminative methods in
the presence of large numbers of noisy or irrelevant fea-
tures (as in raw MNIST, without PCA preprocessing),
by modeling aspects of the data that do not vary across
classes. One possible remedy would be to construct
generative models where only part of the features of
each datapoint (e.g. a subset of features, or an additive
component for all features) is modeled conditioned on
the class label, while the rest is modeled using a sin-
gle set of parameters shared across all classes. This
would in some sense be a probabilistic elaboration on
PCA-based preprocessing. Hyperparameter learning,
ideally involving coupling across classes to support ig-
noring universally noisy or irrelevant features, is one
very simple means of addressing this. Our polynomial
RLS implementation, for example, used leave-one-out
cross-validation to adjust kernel bandwidth, a step in
this direction.

Another approach, supported by the surprisingly good
performance of polynomial RLS with online mean im-
putation, would be to build hybrid classifiers out of
one generative model and one discriminative model.

2Training procedures for discriminative models might
well be explicitly Bayesian or have Bayesian interpretations
(as with regularized least squares and logistic regression),
but this simply means they are probabilistic, not generative.

The trained generative model would provide priors on
missing labels and features, which could be used in fit-
ting and testing a discriminative model. One simple,
heuristic way to realise this combination, using exist-
ing generative and discriminative algorithms, would be
to train a generative model, fill in missing features (or
even labels, during training) according to the mean of
its posterior predictive distribution, and use this filled-
in data to train and test a discriminative algorithm.

The most salient avenue for future work on AClass is in
empirical evaluation. Developing a parallel implemen-
tation and doing an in-depth classification benchmark
study, including other discriminative methods such as
the Forgetron and other kernel machines, will be key;
these were omitted due to the preliminary nature of
our present experiments. We also note that constant-
memory applications (such as classification on embed-
ded devices) could enforce a hard bound by constrain-
ing the Chinese restaurant process to produce no more
than some constant number (say G+) of groups for
each class. This is not equivalent to fixing the number
of groups in advance; each partition with a number of
groups less than or equal to G+ remains a distinct hy-
pothesis in the space, is considered during the course
of inference, and has finite probability.

Furthermore, our inference algorithm can be elabo-
rated in many ways to improve its performance and in-
crease its scope. For example, the transformation from
the AClass model to the chain in Figure 2 motivates a
general strategy for sequentializing Bayesian inference
(over datapoints and over numbers of variables). This
strategy permits more sophisticated particle filters, in-
cluding ones that use proposal distributions obtained
via exactly or approximately summing out over future
values of the latent states, as well as filters that al-
ternate between particle filtering updates and Gibbs
sampling of past assignments. We are currently devel-
oping this general case in a separate paper, as well as
working on their application to the AClass model to
reduce the sensitivity of the one-particle approxima-
tion to mistakes in the beginning of a data set.

Finally, it should be possible to develop approxima-
tions to inference in the AClass model suitable for sit-
uations with missing labels as well as missing features.
In particular, one could attempt to estimate missing
class labels by a nested particle filtering scheme, where
an outer particle filter assigns labels to unlabeled dat-
apoints, and each particle in this filter contains an
instance of the AClass algorithm. Even in data sets
where AClass falls back on a single mode per class,
such a strategy remains online, and therefore a poten-
tially appealing alternative to EM.

5 Conclusion

We have presented AClass, a simple, online, paral-
lelizable learning algorithm for supervised multiclass
classification in the presence of missing data. Our al-
gorithm operates by sequential Monte Carlo inference
in a mixture of Chinese restaurant process mixtures.
This generative model encodes a simple inductive bias,
namely prototype discovery for each class, and our al-
gorithm performs well in preliminary experiments.

Classification algorithms grounded in generative prob-
abilistic models can support principled treatment of
missing feature values and inference over unlabeled
training examples, both of which are important in real-
world applications. However, these advantages must
be achieved while retaining algorithmic tractability
and good generalization performance. We hope that
AClass (and the generative model in which it operates)
represents a useful step in this direction.

Acknowledgments
The authors would like to acknowledge Keith Bonawitz
and Charles Kemp for helpful discussions. Tom Minka
generously provided logistic regression code. This
work was partially supported by NTT Communica-
tion Science Laboratories and Eli Lilly and Company.
References

O. Dekel, S. Shalev-Shwartz, and Y. Singer. The forgetron:
A kernel-based perceptron on a fixed budget. In NIPS
18. 2006.

A. Doucet, N. De Freitas, and N. Gordon, editors. Sequen-
tial Monte Carlo Methods in Practice. 2001.

P. Fearnhead. Particle filters for mixture models with an
unknown number of components. Statistics and Com-
puting, 14:11–21, 2004.

A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin.
Bayesian Data Analysis, Second Edition. Chapman &
Hall, 2003.

A. Halberstadt and J. Glass. Heterogeneous measurements
and multiple classifiers for speech recognition. In Pro-
ceedings of ICSLP, 1998.

R. M. Neal. Markov chain sampling methods for Dirichlet
process mixture models. Journal of Computational and
Graphical Statistics, 9:249–265, 2000.

K. Nigam. Using Unlabeled Data to Improve Text Classi-
fication. Technical Report CMU-CS-01-126, Computer
Science Department, Carnegie-Mellon University, 2001.

C. Rasmussen. The infinite gaussian mixture model. In
NIPS, 2000.

R. Rifkin and R. Lippert. What you should know about
matrix decompositions and regularized least squares.
Unpublished manuscript, 2006.

S. Roweis. http://www.cs.toronto.edu/roweis/data.html,
2006.

A. N. Sanborn, T. L. Griffiths, and D. J. Navarro. A more
rational model of categorization. In COGSCI, 2006.

