
Exchangeable Random Processes and Data Abstraction
Extended Abstract

Sam Staton

Univ. of Oxford

Hongseok Yang

Univ. of Oxford

Nathanael Ackerman

Harvard Univ.

Cameron Freer

Gamalon and Borelian

Daniel M. Roy

Univ. of Toronto

1. Introduction
Several Turing-complete probabilistic programming languages
such as Church, Venture and Anglican support so-called exchange-
able random processes (XRPs) as built-in abstract data types. In-
stances of these data types denote infinite sequences of random
values. Every such object satisfies the so-called exchangeability
property, which says that the probability distribution of the object
does not change under permutations of the sequence. In fact, ex-
changeability is one of the core concepts in Bayesian statistics,
from which these infinite sequences originate. (Extensions of the
notion of exchangeability for sequences apply to other infinite ran-
dom objects such as graphs, which we consider in Section 3.)

We have been working on semantic foundations and reasoning
principles for data types for exchangeable random processes, with
special emphasis on the client programs of these data types. One
slogan that summarises our efforts well is this: a data type for a
random process is exchangeable if its inclusion in a probabilistic
programming language does not break the following commutativity
and discardability of the language, i.e.,

( let x=M in y=M’ in N) = ( let y=M’ in x=M in N)

( let x=M in M’) = M’

where x 6∈ FV(M’) and y 6∈ FV(M). (See also informal discussions
in [1, 5], [10, §2.2.1].) The specifics of a particular data type for an
exchangeable random process are then captured by additional pro-
gram equations, which in turn give rise to a monad for interpreting
client programs of the data type. This equational view may sug-
gest how the data-type developers should use an abstraction mech-
anism of a programming language (e.g., abstract type) so as to hide
implementation details and to get the desired program equations.
Also, it may reveal how exchangeability from statistics is related
to algebraic effects studied in programming languages. Finally, it
may lead to the generalisation of important results on exchange-
able random processes in Bayesian statistics, such as de Finetti’s
theorem and the Aldous–Hoover theorem. Realising these poten-
tials has been the aim of our research.

In this extended abstract, we describe our preliminary results.
We present a set of program equations for certain exchangeable
random processes, and explain data types that implement these
processes and validate these equations. Also, we describe a variant
of de Finetti’s theorem for a probabilistic programming language
extended with these data types. Our results are interleaved with
open questions that have been puzzling us.

2. Exchangeable sequences
Consider the following abstract type in an ML-like language.

module type PROCESS = sig
type process
val new : int ∗ int → process
val get : process → bool

end

The idea is that process is an abstract type of exchangeable random
processes that produce booleans. A client program creates a pro-
cess by calling new, and uses it to generate a sequence of random
booleans by calling get. The exchangeability means that permut-
ing the order of a generated infinite sequence does not change the
probability of the sequence. It does not come for free by the type
signature, but should be ensured by an implementation of the sig-
nature. We will focus on the Beta–Bernoulli process. We will use
an ML-like language with primitives for state:
t ref a type of references (pointers) to things of type t.
ref (x) allocate a new memory cell initialized with x.
! r read the contents of reference cell r.
r:=x write x to reference cell r.

and probability:
sample(d) draw a sample from the distribution d.

We call this language Probabilistic ML. Here is an implementation
based on Pólya’s urn.

module Polya = (struct
type urn = (int ∗ int ) ref
type process = urn
let new(a,b) = ref (a,b)
let get p =
let (a,b) = !p in
if sample( bernoulli (a/(a+b))) then p := (a+1,b) ; true
else p := (a,b+1) ; false

end : PROCESS)

An urn is a hidden state which contains a-many balls marked true
and b-many balls marked false . To sample, we draw a ball from
the urn at random; before we return what we drew, we put back the
ball we drew as well as an identical copy of it.

Programs that use memory do not satisfy commutativity and
discardability in general. For instance,

let x=(!r) in y=(r:=3) in x

6= let y=(r:=3) in x=(!r) in x.

But our module Polya does satisfy commutativity and discardabil-
ity, for instance,

let x=(get p) in y=(get p) in (x,y)

= let y=(get p) in x=(get p) in (x,y).

As we will explain, this property is related to the following ob-
servation. It is legitimate to use this module within a probabilistic
program because it is indistinguishable from the following module,
which only uses probabilistic primitives:

0

0.5

1

1.5

2

0 0.25 0.5 0.75 1

beta(3,2)

beta(2,2)

module Beta Bernoulli = (struct
type process = real
let new(a,b) = sample(beta(a,b))
let get p = sample(bernoulli (p))

end : PROCESS)

Here, the Beta distribution beta(a,b) is
the probability measure on the unit in-

1 2016/12/29



terval [0, 1], which, as illustrated, measures the probable bias of a
random source from which true has been observed (a − 1) times
and false has been observed (b− 1) times.

2.1 General analysis
We now state a general formulation of the above phenomenon. No-
tice that although Probabilistic ML is not generally commutative,
because it allows memory access, it is commutative if we restrict
the use of memory to the calls in Polya. We make this general by
considering, alongside Probabilistic ML, a simple first-order pro-
gramming language which is the first-order fragment of Moggi’s
monadic metalanguage [11] extended with a type constant process
and two special typing rules:

Γ ` M : int Γ ` N : int
Γ ` new(M,N) : process

Γ ` P : process

Γ ` get(P) : bool

The idea is that this simple first-order language has the chance
to fully satisfy commutativity and discardability, because it has
no explicit memory. Different notions of ‘process’ will endow the
simple language with a different semantics and hence a different
equality theory. In particular, from any Probabilistic ML module I
that implements the signature PROCESS, we can derive a notion
of contextual equivalence for the simple first-order language, as
follows. A closed program of type bool determines a probability
distribution on {true, false }, found by running it and building a
histogram of the results. In general for Γ ` M,N : t we write
M ≈I N if for all contexts C such that ` C[M], C[N] : bool, the
closed programs C[M] and C[N] describe the same distribution.

The modules Polya and Beta Bernoulli induce the same notion
of contextual equivalence for the simple first-order language. This
is an instance of the following more general result.

We say that a Probabilistic ML module I for the signature
PROCESS is exchangeable if the induced contextual equiva-
lence ≈I on the simple first-order language is commutative and
discardable. We can now state a de Finetti-type theorem (see
also [3]).

Theorem 2.1. For any exchangeable module there is an implemen-
tation using only probabilistic primitives and no local state that
induces the same notion of contextual equivalence.

2.2 Particular analysis of Beta–Bernoulli
Contextual equivalence is difficult to reason about because of the
quantification over all contexts. For a fixed module I, we can try to
axiomatise contextual equivalence, following [15]. We now do this
for the Beta–Bernoulli process. First, we define random(m:n):bool
to be let p=new(m,n) in get(p). Informally, (m:n) are the odds
that random(m:n) returns true. We propose the following program
equation:[

let p=new(m,n)
in (get(p),p)

]
=

 if random(m:n)
then (true ,new(m+1,n))
else ( false ,new(m,n+1))

 (1)

in addition to commutativity and discardability and the laws of
probability [20]:

random(m:n) = not(random(n:m))

random((m ∗ k):(n ∗ k)) = random(n:m)

random(1:0) = true let a=random(f(true , true)+f(true , false ):
f( false , true)+f( false , false )) in

let b=random(f(a,true):f(a, false )) in (a,b)


=

 let b=random(f(true , true)+f( false , true ):
f(true , false )+f( false , false )) in

let a=random(f(true,b):f( false ,b)) in (a,b)



where f ranges over functions bool∗bool→ int. (This is perhaps
not the usual formulation of barycentric algebra [8] but it is equiv-
alent, and it is actually the axiomatization proposed by Stone [20].)

Conjecture 2.2. These equations completely describe the contex-
tual equivalence induced by the module Beta Bernoulli (equiva-
lently, Polya).

We say a few words about the soundness of these equations. In
the urn-based implementation, Polya, commutativity involves some
basic arithmetic. The key equation (1) is essentially the source code
of the implementation.

For the purely probabilistic implementation, Beta Bernoulli ,
in the standard semantics for probabilistic languages [16, 19], pro-
grams Γ ` M : t are understood as probability kernels

JΓK× Σ(JtK)→ [0, 1]

and sequencing let x=M in N means integration:

J let x=M in NK =

∫
JNK dJMK.

Thus commutativity is Fubini’s theorem for interchanging the order
of integration. The key equation (1) is the conjugate prior relation-
ship between the Bernoulli distribution and the Beta distribution.

2.3 Remarks on affine monads
In earlier work [18], apart from probabilistic programming, we
have shown how program equations such as the ones for the Beta–
Bernoulli process correspond bijectively with monads on the cat-
egory of functors [FinSet,Set]. The idea of using functor cate-
gories to build monads with name generation goes back to Moggi’s
initial work [11], and is common throughrout work on names and
local memory [2, 12, 14, 15, 17]. From the point of view of mon-
ads, commutativity and discardability correspond to a monad being
affine (e.g., [6]); see also [4, 7]. In future we hope to find explicit
characterizations of the monads that arise from exchangeable pro-
cesses.

3. Other kinds of exchangeability
We now consider some other exchangeability issues and show
that they can also be expressed in terms of commutativity and
discardability.

3.1 Chinese Restaurant Process
The Chinese Restaurant Process (CRP) describes a restaurant with
the following protocol: as new people enter the restaurant, they pick
a table; they are more likely to pick a busy table (see, e.g., [13,
Ex. II.4]). It is often said that the sequence of tables allocated by
CRP is an exchangeable sequence, but what does this mean? What
is a table? If a table is an integer, then what is the number of the
first table? If the first table is always 1, then statement of exchange-
ability becomes complicated. This is unfortunate because we would
have to attach this bespoke statement of exchangeability to our CRP
module. In fact, we can resolve this by saying that the type of tables
is an abstract type, and the statement of exchangeability then be-
comes commutativity and discardability, so a bespoke statement of
exchangeability is not needed. We replace the signature PROCESS
with the following:

module type ABSTRACT PROCESS = sig
type process
type result
val new : unit → process
val get : process → result
val equal : result ∗ result → bool end

2 2016/12/29



Here is a simple implementation, where a table is implemented as
a pointer to an integer that records how many people are currently
sitting at it:

module Crp = (struct
type table = int ref
type restaurant = (table list ) ref
type process = restaurant
type result = table
let new () = ref []
let get r =
let brand new table = ref 0 in
let table list =
(1,brand new table) :: (map (fun t → (!t,t)) ! r) in

let chosen table = sample(categorical ( table list )) in
if chosen table == brand new table
then r := brand new table :: ! r ;
chosen table := ! chosen table + 1 ; chosen table

let equal(x,y) = (x==y)
end : ABSTRACT PROCESS)

Here categorical denotes a categorical distribution. For instance,
sample( categorical [(11,’’ hi ’’);(12,’’ bye ’’);(27,’’ pps ’’)])
produces hi with probability 0.22 = 11

(11+12+27)
, bye with proba-

bility 0.24, and pps with probability 0.54.
We can now reformulate contextual equivalence in this setting.

Proposition 3.1. The module for the Chinese Restaurant Process
(Crp) is exchangeable: we have commutativity and discardability
up to contextual equivalence.

3.2 Exchangeable random graphs via commutativity and
discardability

The Chinese Restaurant Process can also be seen as a random
graph. We give the terms of the signature different labels:

module type RANDOM GRAPH = sig
type graph
type node
val new : unit → graph
val fresh node : graph → node
val is edge : node ∗ node → bool

end

The idea is that there is an underlying distribution over infinite
graphs. The command new samples a new infinite graph from the
distribution, and fresh node retrieves the name of a fresh, unseen
node. We can explore the graph by asking whether there are edges
between nodes. In the CRP, the graph is actually an equivalence
relation, but one can consider random graphs more generally.

A probability distribution over infinite graphs is said to be
exchangeable if permuting the nodes of the graph does not affect
the distribution. In fact, this notion of exchangeability coincides
with commutativity and discardability of calls to fresh node.

Given nodes a1 ,..., an:node, we can find the adjacency matrix
adjacencyn(a1,...,an):bool

n×n. For example, adjacency2(a,b) is

( isedge(a,a), isedge(a,b), isedge(b,a), isedge(b,b)):bool2×2.

Now, commutativity and discardability of calls to fresh node
amounts to exchanging the row/column indices in the adjacency
matrix. For instance, for any permutation π of n, let g=new() in let a1=fresh node g in ...

let an=fresh node g in
adjacencyn(a1,...,an)


=

 let g=new() in let aπ−1(1)=fresh node g in ...
let aπ−1(n)=fresh node g in
adjacencyn(a1,...,an)



=

 let g=new() in let a1=fresh node g in . . .
let an=fresh node g in
adjacencyn(aπ(1),...,aπ(n))


The first step is by commuting calls to fresh node, and the second
step is just renaming variables.

Open Question 3.2. For every exchangeable implementation of
the signature RANDOM GRAPH, is there an implementation that
only uses probabilistic primitives, not those for states, and induces
the same notion of contextual equivalence?

At first sight, one might expect the answer to be “yes” by
some generalisation of Theorem 2.1. However, we do not know
whether there is a generalisation. We know that sampling from a
Gaussian distribution is very much like name generation, in that it
almost surely never gives the same result twice, and exchangeable
random graphs have canonical representations via the Aldous–
Hoover theorem, which generalises de Finetti’s theorem (see, e.g.,
[13]). But we do not know whether it is possible to combine these
ideas. If not, it would be interesting to find a minimal extension of
probability theory that admits an answer of “yes”.

4. Conclusion and other directions
In this abstract we have focussed on the semantics of sampling
from exchangeable processes. We have argued that the concepts
of exchangeability from statistics can be studied in terms of the
commutativity and discardability program equations, by carefully
using abstract types and fresh name generation.

There are other aspects to probabilistic programming, besides
sampling, such as conditioning, non-termination, and simulation,
which we have not covered here. For instance, efficient simula-
tion for stateful exchangeable modules would require thread-local
state [9] or ‘unsampling’ [21].

Selected References
[1] N. Ackerman, C. Freer, and D. Roy. Exchangeable random primitives.

In Proc. PPS 2016, 2016.

[2] M. P. Fiore, G. D. Plotkin, and D. Turi. Abstract syntax and variable
binding. In Proc. LICS 1999, 1999.

[3] C. E. Freer and D. M. Roy. Computable de Finetti measures. Ann.
Pure Appl. Logic, 163(5):530–546, 2012.

[4] C. Führmann. Varieties of effects. In Proc. FOSSACS 2002, 2002.

[5] N. Goodman, V. Mansinghka, D. M. Roy, K. Bonawitz, and J. B.
Tenenbaum. Church: a language for generative models. In UAI, 2008.

[6] B. Jacobs. Affine monads and side-effect-freeness. In CMCS 2016.

[7] O. Kammar and G. D. Plotkin. Algebraic foundations for effect-
dependent optimisations. In Proc. POPL 2012, 2012.

[8] K. Keimel and G. D. Plotkin. Mixed powerdomains for probability
and nondeterminism. 2015.

[9] O. Kiselyov and C.-C. Shan. Probabilistic programming using first-
class stores and first-class continuations. In Proc. 2010 ACM SIG-
PLAN Workshop on ML, 2010.

[10] V. K. Mansinghka. Natively Probabilistic Computing. PhD thesis,
MIT, 2009.

[11] E. Moggi. Notions of computation and monads. Inf. Comput.,
93(1):55–92, 1991.

[12] P. W. O’Hearn and R. D. Tennent. Parametricity and local variables. J
ACM, 42(3):658–709, 1995.

[13] P. Orbanz and D. Roy. Bayesian models of graphs, arrays and other
exchangeable random structures. IEEE Trans. Pattern Anal. Mach.
Intelligence (PAMI), 2014.

[14] A. M. Pitts. Nominal sets: Names and Symmetry in Computer Science.
CUP, 2013.

3 2016/12/29



[15] G. D. Plotkin and J. Power. Notions of computation determine mon-
ads. In Proc. FOSSACS 2002, 2002.

[16] N. Ramsey and A. Pfeffer. Stochastic lambda calculus and monads of
probability distributions. In Proc. POPL 2002, 2002.

[17] I. Stark. Categorical models for local names. Lisp and Symbolic
Computation, 1996.

[18] S. Staton. Instances of computational effects. In Proc. LICS 2013.
[19] S. Staton, H. Yang, C. Heunen, O. Kammar, and F. Wood. Semantics

for probabilistic programming: higher-order functions, continuous dis-
tributions, and soft constraints. In Proc. LICS 2016, 2016.

[20] M. H. Stone. Postulates for the barycentric calculus. Annali di
Matematica Pura ed Applicata, 29:25–30, 1949.

[21] J. Wu. Reduced traces and JITing in church. Master’s thesis, MIT,
2013.

4 2016/12/29


